分析 原式中的角度变形后,利用诱导公式变形,将已知等式代入计算即可求出值.
解答 解:∵cos($\frac{π}{6}$-θ)=$\frac{1}{3}$,
∴sin2($\frac{π}{6}$-θ)=$\frac{8}{9}$,
∴原式=cos[π-($\frac{π}{6}$-θ)]-sin2($\frac{π}{6}$-θ)=-cos($\frac{π}{6}$-θ)-sin2($\frac{π}{6}$-θ)=-$\frac{1}{3}$-$\frac{8}{9}$=-$\frac{11}{9}$.
故答案为:-$\frac{11}{9}$.
点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\frac{1}{8}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y′=2xcos x-x2sinx | B. | y′=2xcos x+x2sin x | ||
| C. | y′=x2cos x-2xsin x | D. | y′=xcos x-x2sin x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com