| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
分析 利用平面向量数量积的几何意义和三角形外心的性质,即可求得结果.
解答 解:如图所示,![]()
△ABC中,AB=2,AC=4,O为△ABC的外心,
结合平面向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,
可得$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{1}{2}$${\overrightarrow{AB}}^{2}$=$\frac{1}{2}$×4=2,
$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$${\overrightarrow{AC}}^{2}$=$\frac{1}{2}$×16=8,
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\overrightarrow{AO}$•$\overrightarrow{AC}$-$\overrightarrow{AO}$•$\overrightarrow{AB}$=8-2=6.
故选:B.
点评 本题考查了平面向量数量积的几何意义和三角形外心的性质以及向量的三角形法则问题,是综合题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4]∪[-1,+∞) | B. | (-∞,-1]∪[4,+∞) | C. | (-4,1) | D. | (-1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2018×22016 | B. | 2018×22015 | C. | 2017×22016 | D. | 2017×22015 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com