精英家教网 > 高中数学 > 题目详情
1.已知圆O:x2+y2=4(其中O为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线C
(1)求曲线C的离心率;
(2)若点P为曲线C上一点,过点P作曲线C的切线交圆O于不同的两点A,B(其中A在B的右侧),已知点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),求四边形ABF1F2面积的最大值.

分析 (1)设点P(x',y'),点M的坐标为(x,y),由题意可知x′=x,y′=2y,由此能求出点M的轨迹C的方程,进一步求出椭圆的离心率;
(2)四边形ABF1F2面积S,S=S△ABO+${S}_{△B{F}_{1}O}$+${S}_{△A{F}_{2}O}$,设直线AB:y=kx+m,代入椭圆方程,利用点到直线的距离公式及丨AB丨=2$\sqrt{4-\frac{{m}^{2}}{{k}^{2}+1}}$,求得S△ABO,将直线方程代入圆的方程,利用韦达定理,求得${S}_{△B{F}_{1}O}$+${S}_{△A{F}_{2}O}$,由k2=$\frac{{m}^{2}-1}{4}$,易知k2≥0,求得丨m丨≥1,利用基本不等式的性质,即可求得四边形ABF1F2面积的最大值.

解答 解:(1)设圆O上点P(x',y'),曲线C上点M的坐标为
由题意可知x′=x,y′=2y,
又x'2+y'2=4,∴x2+4y2=4,即$\frac{{x}^{2}}{4}+{y}^{2}$=1.
∴点M的轨迹C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1,则a2=4,b2=1,
$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{3}$,
离心率e=$\frac{\sqrt{3}}{2}$;
(2)易知直线AB的斜率k存在,设AB:y=kx+m,A(x1,y1),B(x2,y2),
则$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,(4k2+1)x2+8kmx+4(m2-1)=0,
则△=(8km)2-16(4k2+1)(m2-1)=0,整理得:4k2-m2+1=0,即m2=4k2+1,
由四边形ABF1F2面积S,S=S△ABO+${S}_{△B{F}_{1}O}$+${S}_{△A{F}_{2}O}$,
设点O到直线AB:kx-y+m=0的距离为d,d=$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
则丨AB丨=2$\sqrt{丨OA{丨}^{2}-{d}^{2}}$=2$\sqrt{4-\frac{{m}^{2}}{{k}^{2}+1}}$,
S△ABO=$\frac{1}{2}$×2$\sqrt{4-\frac{{m}^{2}}{{k}^{2}+1}}$×$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
=$\sqrt{4-\frac{{m}^{2}}{{k}^{2}+1}}$×$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
=$\frac{\sqrt{(4{k}^{2}+4-{m}^{2}){m}^{2}}}{{k}^{2}+1}$=$\frac{\sqrt{3}丨m丨}{{k}^{2}+1}$,
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,整理得:(k2+1)x2+2kmx+m2-4=0,
由韦达定理可知:x1+x2=-$\frac{2km}{{k}^{2}+1}$,x1x2=$\frac{{m}^{2}-4}{{k}^{2}+1}$,
y1+y1=kx1+m+kx2+m=k(x1+x2)+2m=$\frac{2m}{{k}^{2}+1}$,
${S}_{△B{F}_{1}O}$+${S}_{△A{F}_{2}O}$=$\frac{1}{2}$×$\sqrt{3}$丨y1丨+$\frac{1}{2}$×$\sqrt{3}$丨y2丨=$\frac{\sqrt{3}}{2}$(丨y1丨+丨y2丨)=$\frac{\sqrt{3}}{2}$丨y1+y2丨=$\frac{\sqrt{3}丨m丨}{{k}^{2}+1}$,
S=S△ABO+(${S}_{△B{F}_{1}O}$+${S}_{△A{F}_{2}O}$)=$\frac{\sqrt{3}丨m丨}{{k}^{2}+1}$+$\frac{\sqrt{3}丨m丨}{{k}^{2}+1}$=$\frac{2\sqrt{3}丨m丨}{{k}^{2}+1}$

而m2=4k2+1,k2=$\frac{{m}^{2}-1}{4}$,易知k2≥0,
∴m2≥1,丨m丨≥1,
四边形ABF1F2面积S,S=$\frac{2\sqrt{3}丨m丨}{\frac{{m}^{2}-1}{4}+1}$=$\frac{8\sqrt{3}丨m丨}{{m}^{2}+3}$=$\frac{8\sqrt{3}}{丨m丨+\frac{3}{丨m丨}}$≤$\frac{8\sqrt{3}}{2\sqrt{丨m丨×\frac{3}{丨m丨}}}$4,
当且仅当丨m丨=$\frac{3}{丨m丨}$时,即m=±$\sqrt{3}$,
∴四边形ABF1F2面积的最大值4.

点评 本题考查的标准方程及简单几何性质,直线与椭圆及圆的位置关系,考查韦达定理,弦长公式,三角形的面积公式,考查点到直线的距离公式,基本不等式的应用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2AD=2,四边形BDEF为矩形,
平面BDEF丄平面ABCD,BD⊥CF.
(1)若AF⊥CE,求证:CE⊥DF
(2)在棱AE上是否存在点G,使得直线BG∥平面EFC?并说明理由•

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别为a,b,c,已知(sinA-sinB)(a+b)=($\frac{1}{2}$a-c)sinC,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log36,b=log48,c=log510,则(  )
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=4sinxcos(x+\frac{π}{3})+\sqrt{3}$,$x∈[{0,\frac{π}{6}}]$.
(1)求函数f(x)的值域;
(2)已知锐角△ABC的两边长a,b分别为函数f(x)的最小值与最大值,且△ABC的外接圆半径为$\frac{{3\sqrt{2}}}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆E的中心为原点,它在x轴上的一个焦点与短轴的两个端点的连线互相垂直,且此焦点和长轴的较近端点的距离等于$\sqrt{10}$-$\sqrt{5}$.
(1)求椭圆E的方程;
(2)已知双曲线H的左、右焦点F1、F2与椭圆E的两个焦点相同,E与H在第一象限交于点P且|PF1||PF2|=6,求双曲线H的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若f′(x0)=4,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}+2△x)-f({x}_{0})}{△x}$=(  )
A.2B.4C.$\frac{1}{8}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC中,AB=2,AC=4,O为△ABC的外心,则$\overrightarrow{AO}$•$\overrightarrow{BC}$等于(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察(x2)'=2x,(x4)'=4x3,(x6)'=6x5,(cosx)'=-sinx.由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )
A.f(x)B.-f(x)C.g(x)D.-g(x)

查看答案和解析>>

同步练习册答案