精英家教网 > 高中数学 > 题目详情
15.定积分$\int_0^π{(sinx-cosx})dx$的值为(  )
A.-1B.-2C.2D.π

分析 根据定积分的计算法则计算可.

解答 解:$\int_0^π{(sinx-cosx})dx$=(-cosx-sinx)|${\;}_{0}^{π}$=-[(cosπ+sinπ)-(cos0+sin0)]=2,
故选:C

点评 本题考查了定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某营养师要为某个儿童预订午餐和晚餐,已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,分别用x,y表示为该儿童预订的午餐和晚餐的单位数.
(Ⅰ)用x,y列出满足营养要求的数学关系式,并画出相应的平面区域;
(Ⅱ)问应当为该儿童分别预订多少个单位的午餐和晚餐,才能满足上述的营养要求,并且花费最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆E的中心为原点,它在x轴上的一个焦点与短轴的两个端点的连线互相垂直,且此焦点和长轴的较近端点的距离等于$\sqrt{10}$-$\sqrt{5}$.
(1)求椭圆E的方程;
(2)已知双曲线H的左、右焦点F1、F2与椭圆E的两个焦点相同,E与H在第一象限交于点P且|PF1||PF2|=6,求双曲线H的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数y=f(x)定义在实数集上,则函数y=f(x-m)与y=f(m-x)(m>0)的图象关于直线x=m对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC中,AB=2,AC=4,O为△ABC的外心,则$\overrightarrow{AO}$•$\overrightarrow{BC}$等于(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{6}}}{2}$,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=x2cos x的导数为(  )
A.y′=2xcos x-x2sinxB.y′=2xcos x+x2sin x
C.y′=x2cos x-2xsin xD.y′=xcos x-x2sin x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在原点,焦点在x轴上,焦距为2.,且长轴长是短轴长的$\sqrt{2}$倍.
(1)求椭圆C的标准方程;
(2)设P(2,0),过椭圆C的左焦点F的直线l交C于A,B两点,若对满足条件的任意直线l,不等式$\overrightarrow{PA}$?$\overrightarrow{PB}$≤λ(λ∈R)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$tanB=\sqrt{3}$,AB=3,${S_{△ABC}}=\frac{{3\sqrt{3}}}{2}$,则AC的长度为$\sqrt{7}$.

查看答案和解析>>

同步练习册答案