精英家教网 > 高中数学 > 题目详情
20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{6}}}{2}$,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

分析 先由题设条件求出双曲线的a,c的关系,从而得到a和 b的关系,再利用椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的a和b关系求出椭圆的离心率.

解答 解:由题设条件可知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{{\sqrt{6}}}{2}$,
∴不妨设a=2.c=$\sqrt{6}$,∴b=$\sqrt{2}$
∴椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的a=2.b=$\sqrt{2}$
∴c=$\sqrt{2}$
则椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的离心率为e=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查椭圆、双曲线的标准方程及简单性质.本题是双曲线的椭圆的综合题,难度不大,只要熟练掌握圆锥曲线的性质就行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x)2≤x≤10}\end{array}\right.$,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,则$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范围是(  )
A.(15,25)B.(20,32)C.(8,24)D.(9,21)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
(1)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
(2)若cosx=-$\frac{2}{3},x∈[{0,π}]$,则x值为:π-arc$cos\frac{2}{3}$.
(3)若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$;
(4)$\overrightarrow{a}$=$\overrightarrow{b}$⇒|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,$\overrightarrow{a}$∥$\overrightarrow{b}$
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了得到函数y=2sin($\frac{x}{3}-\frac{π}{6}$),x∈R的图象只需把函数y=2sinx,x∈R的图象上所有的点(  )
A.向右平移$\frac{π}{6}$个单位长度,再把所有各点的横坐标缩短到原来的$\frac{1}{3}$倍
B.向左平移$\frac{π}{6}$个单位长度,再把所有各点的横坐标伸长到原来的3倍
C.向左平移$\frac{π}{6}$个单位长度,再把所有各点的横坐标缩短到原来的$\frac{1}{3}$倍
D.向右平移$\frac{π}{6}$个单位长度,再把所有各点的横坐标伸长到原来的3倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定积分$\int_0^π{(sinx-cosx})dx$的值为(  )
A.-1B.-2C.2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列求导运算正确的是(  )
A.$(x+\frac{1}{x})'=1+\frac{1}{x^2}$B.$({log_2}x)'=\frac{1}{xln2}$C.(2x)'=2xlog2eD.(xcosx)'=-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x>1,y>1,且lgx,2,lgy成等差数列,则x+y有(  )
A.最小值为20B.最小值为200C.最大值为20D.最大值为200

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设直线l0过抛物线C:x2=2py(p>0)的焦点且与抛物线分别相交于A0,B0两点,已知|A0B0|=6,直线l0的倾斜角θ满足sinθ=$\frac{\sqrt{3}}{3}$.
(1)求抛物线C的方程;
(2)设N是直线l:y=x-4上的任一点,过N作C的两条切线,切点分别为A,B,试证明直线AB过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)与双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦点,则m+n的取值范围是(  )
A.(0,6]B.[3,6]C.(3$\sqrt{2}$,6]D.[6,9)

查看答案和解析>>

同步练习册答案