精英家教网 > 高中数学 > 题目详情
14.已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,上顶点和右顶点分别为B,A,线段AB的中点为D,且${k_{DD}}•{k_{AN}}=\frac{1}{2}$,△AOB的面积为$2\sqrt{2}$.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为$\frac{16}{3}$,求以F2为圆心且与直线l相切的圆的方程.

分析 (1)设椭圆方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,求出左焦点F1(-c,0),右焦点F2(c,0),B(0,b),A(a,0),推出$D({\frac{a}{2},\frac{b}{2}})$,利用${k_{OD}}•{k_{AB}}=\frac{b}{a}•({-\frac{b}{a}})=-\frac{1}{2}$知,a2=2b2,结合三角形的面积,求出a,b即可得到椭圆方程.
(2)由上知F1(-2,0),设过F1的直线l的方程为:x+2=my,联立直线与椭圆方程,消去x,设M(x1,y1),N(x2,y2),利用韦达定理弦长公式,表示三角形的面积,然后求解即可.

解答 解:(1)设椭圆方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,
左焦点F1(-c,0),右焦点F2(c,0),B(0,b),A(a,0),
则$D({\frac{a}{2},\frac{b}{2}})$,由已知${k_{OD}}•{k_{AB}}=\frac{b}{a}•({-\frac{b}{a}})=-\frac{1}{2}$知,a2=2b2
又${S_{△AOB}}=\frac{1}{2}ab=2\sqrt{2}⇒ab=4\sqrt{2}$,解得a2=8,b2=4,
所以椭圆方程为:$\frac{x^2}{8}+\frac{y^2}{4}=1$.
(2)由上知F1(-2,0),设过F1的直线l的方程为:x+2=my,
由$\left\{\begin{array}{l}x=my-2\\{x^2}+2{y^2}=8\end{array}\right.⇒({{m^2}+2}){y^2}-4my-4=0$,
设M(x1,y1),N(x2,y2),则$\left\{\begin{array}{l}{y_1}+{y_2}=\frac{4m}{{{m^2}+2}}\\{y_1}{y_2}=-\frac{4}{{{m^2}+2}}\end{array}\right.$,又因为${S_{△M{F_2}N}}=\frac{1}{2}•2c•|{{y_1}-{y_2}}|=2\sqrt{{{({\frac{4m}{{{m^2}+2}}})}^2}-4•({-\frac{4}{{{m^2}+2}}})}=\frac{16}{3}$;
化简得2m4-m2-1=0⇒m2=1或${m^2}=-\frac{1}{2}$(舍去),
故m=±1,此时直线l的方程为:x-y+2=0或x+y+2=0,
易知F2(2,0)到直线l的距离为圆的半径,即$r=2\sqrt{2}$,
所以所求圆的方程为:(x-2)2+y2=8.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图是甲、乙两个商场统计同一时间段各自每天的销售额(单位:万元)的茎叶图,假设销售额的中位数为m,平均值为$\overline{x}$,则下列正确的是(  )
A.m=m,$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$B.m=m,$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$
C.m>m,$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$D.m<m,$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=aex-x(a∈R),其中e为自然对数的底数,e=2.71828…
(Ⅰ)判断函数f(x)的单调性,并说明理由
(Ⅱ)若x∈[1,2],不等式f(x)≥e-x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,AB为⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在$\widehat{AC}$上,$\widehat{AD}$=2$\widehat{CD}$,点P是OC上一动点,则PA+PD的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C的对边分别是a,b,c,若c=5,S△ABC=10$\sqrt{3}$,B=$\frac{π}{3}$,则△ABC的周长为(  )
A.22B.20C.17D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标平面中,△ABC的两个顶点为B(0,-1),C(0,1),平面内两点P、Q同时满足:
①$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;②|$\overrightarrow{QA}$|=|$\overrightarrow{QB}$|=|$\overrightarrow{QC}$|;③$\overrightarrow{PQ}$∥$\overrightarrow{BC}$.
(1)求顶点A的轨迹E的方程;
(2)过点F($\sqrt{2}$,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N.
(ⅰ)求四边形A1A2B1B2的面积S的最小值;
(ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足${b_n}={2^{a_n}}+1$,求数列{bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,其中正视图、侧视图均由直角三角形中与半圆构成,俯视图由圆和内接三角形构成,根据图中的数据可得几何体的表面积为(  )
A.1+$\frac{\sqrt{3}+3π}{2}$B.$\frac{1+\sqrt{3}+π}{2}$C.$\frac{1+\sqrt{3}+3π}{2}$D.$\frac{3+\sqrt{3}+3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={(\frac{1}{2})^{\sqrt{x-{x^2}}}}$的单调递增区间为(  )
A.$(-∞,\frac{1}{2}]$B.$[{0,\frac{1}{2}}]$C.$[\frac{1}{2},+∞)$D.$[{\frac{1}{2},1}]$

查看答案和解析>>

同步练习册答案