精英家教网 > 高中数学 > 题目详情
4.函数$f(x)={(\frac{1}{2})^{\sqrt{x-{x^2}}}}$的单调递增区间为(  )
A.$(-∞,\frac{1}{2}]$B.$[{0,\frac{1}{2}}]$C.$[\frac{1}{2},+∞)$D.$[{\frac{1}{2},1}]$

分析 令t=$\sqrt{x{-x}^{2}}$,则x-x2≥0,由此求得函数的定义域,则f(x)=g(t)=${(\frac{1}{2})}^{t}$,本题即求函数t的减区间,再利用二次函数的性质得出结论.

解答 解:令t=$\sqrt{x{-x}^{2}}$,则x-x2≥0,求得0≤x≤1,故函数的定义域为(0,1),
且f(x)=g(t)=${(\frac{1}{2})}^{t}$,本题即求函数t的减区间.
再利用二次函数的性质,可t=$\sqrt{x{-x}^{2}}$ 的减区间为[$\frac{1}{2}$,1],
故选:D.

点评 本题主要考查复合函数的单调性,根式函数、二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F1,F2,上顶点和右顶点分别为B,A,线段AB的中点为D,且${k_{DD}}•{k_{AN}}=\frac{1}{2}$,△AOB的面积为$2\sqrt{2}$.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为$\frac{16}{3}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为560.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的公差为d,等比数列{bn}的公比为q,设{an},{bn}的前n项和分别为Sn,Tn,若${n^2}({T_n}+1)={2^n}{S_n}$,n∈N*,则d=2,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.
评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线与直线x-2y-7=0垂直,求f(x)的单调区间;
(2)求证:f(x)≥1恒成立的充要条件是a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式$-\sqrt{3}<tanx<2$的解集是(  )
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-a)e-x,其中a为常数.
(1)判断f(x)在x=0处的切线是否经过一个定点,并说明理由;
(2)讨论f(x)在区间[-2,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=$\sqrt{{x}^{2}+2x+1}$,g(x)=|x-1|.
(1)求不等式|f(x)-1|<2的解集;
(2)当|a+b|-|a-b|>2|b|[f(x)-g(x)](b≠0,a,b∈R)的解集非空,求x的取值范围.

查看答案和解析>>

同步练习册答案