精英家教网 > 高中数学 > 题目详情
16.不等式$-\sqrt{3}<tanx<2$的解集是(  )
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

分析 根据正切函数的图象,结合tan(-$\frac{π}{3}$)=-$\sqrt{3}$,可得结论.

解答 解:根据正切函数的图象,结合tan(-$\frac{π}{3}$)=-$\sqrt{3}$,可得不等式$-\sqrt{3}<tanx<2$的解集是$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$,
故选A.

点评 本题考查不等式的解法,考查三角函数的图象与性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足${b_n}={2^{a_n}}+1$,求数列{bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=x|x-a|(a∈R).
(1)若a=1,解不等式f(x)<2x;
(2)若对任意的x∈[1,4],都有f(x)<4+x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={(\frac{1}{2})^{\sqrt{x-{x^2}}}}$的单调递增区间为(  )
A.$(-∞,\frac{1}{2}]$B.$[{0,\frac{1}{2}}]$C.$[\frac{1}{2},+∞)$D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且满足4nSn=(n+1)2an.a1=1
(1)求an
(2)设bn=$\frac{n}{{a}_{n}}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.f(x)为奇函数,当x>0时,f(x)=π-arccos(sinx)则x<0时,f(x)=(  )
A.arccos(sinx)B.π+arccos(sinx)C.-arccos(sinx)D.-π-arccos(sinx)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等差数列{an}的前n项和为Sn,若数列{an}是单调递增数列,且满足a5≤6,S3≥9,则a6的取值范围是(3,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在(0,+∞)上的单调函数f(x),对?x∈(0,+∞),都有f[f(x)-lnx]=e+1,则函数g(x)=f(x)-f′(x)-e的零点所在区间是(  )
A.(1,2)B.(2,3)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P(0,-2),点A,B分别为椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且$\overrightarrow{PQ}$=$\frac{3}{2}\overrightarrow{QB}$.
(1)求E的方程;
(2)设过点的动直线l与E相交于M,N两点,当坐标原点O位于MN以为直径的圆外时,求直线l斜率的取值范围.

查看答案和解析>>

同步练习册答案