精英家教网 > 高中数学 > 题目详情
7.已知f(x)=x|x-a|(a∈R).
(1)若a=1,解不等式f(x)<2x;
(2)若对任意的x∈[1,4],都有f(x)<4+x成立,求实数a的取值范围.

分析 (1)当a=1时,不等式即x(|x-1|-2)<0,可得$\left\{\begin{array}{l}{x>0}\\{|x-1|<2}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x<0}\\{|x-1|>2}\end{array}\right.$②.分别求得①和②的解集,再取并集,即得所求.
(2)由题意可得x∈[1,4]时,不等式|x-a|<1+$\frac{4}{x}$ 恒成立,再根据当x=1、x=4时该不等式成立,求得实数a的取值范围.

解答 解:(1)当a=1时,不等式f(x)<2x,即x|x-1|<2x,即x(|x-1|-2)<0,
∴$\left\{\begin{array}{l}{x>0}\\{|x-1|<2}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x<0}\\{|x-1|>2}\end{array}\right.$②.
解①求得0<x<3,解②求得x<-1,故原不等式的解集为{x|0<x<3,或x<-1}.
(2)∵对任意的x∈[1,4],都有f(x)<4+x成立,即x|x-a|<x+4恒成立,即|x-a|<1+$\frac{4}{x}$.
∴$\left\{\begin{array}{l}{|1-a|<1+\frac{4}{1}}\\{|4-a|<1+\frac{4}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{-5<a-1<5}\\{-2<a-4<2}\end{array}\right.$,求得2<a<6,
即实数a的取值范围为(2,6).

点评 本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.直线mx+(m+2)y-1=0与直线(m-1)x+my=0互相垂直,则m=0或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知曲线C的极坐标方程为${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,若P(x,y)是曲线C上的一个动点,则3x+4y的最大值为$\sqrt{145}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前3项和为6,前8项和为-4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(4-an)•3n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的公差为d,等比数列{bn}的公比为q,设{an},{bn}的前n项和分别为Sn,Tn,若${n^2}({T_n}+1)={2^n}{S_n}$,n∈N*,则d=2,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.学校艺术节对A,B,C,D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A,D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.
评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式$-\sqrt{3}<tanx<2$的解集是(  )
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲线f(x)在x=$\frac{1}{2}$处的切线与直线y=-$\frac{3}{4}$x-1平行.
(Ⅰ)求a的值及函数f(x)的解析式;
(Ⅱ)若函数y=f(x)-m在区间[-3,$\sqrt{3}$]上有三个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案