精英家教网 > 高中数学 > 题目详情
1.f(x)为奇函数,当x>0时,f(x)=π-arccos(sinx)则x<0时,f(x)=(  )
A.arccos(sinx)B.π+arccos(sinx)C.-arccos(sinx)D.-π-arccos(sinx)

分析 利用奇函数的定义,结合反三角函数,即可得出结论.

解答 解:∵sin(-x)=-sinx∴,-(π-arccos(sin(-x))=-(π-arccos(-sinx)),
又arccos(-α)=π-arccosα,
∴-(π-arccos(sin(-x))=-(π-arccos(-sinx))=-(π-(π-arccos(sinx)))=-arccos(sinx),
∴x<0时,-x>0,f(-x)=-f(x)=-(π-arccos(sin(-x))=-arccos(sinx),
故选:C.

点评 本题考查奇函数的定义、反三角函数,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若点P为△ABC某两边的垂直平分线的交点,且$\overrightarrow{PA}+\overrightarrow{PB}-\overrightarrow{PC}=\overrightarrow 0$,则∠ACB=(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的公差为d,等比数列{bn}的公比为q,设{an},{bn}的前n项和分别为Sn,Tn,若${n^2}({T_n}+1)={2^n}{S_n}$,n∈N*,则d=2,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线与直线x-2y-7=0垂直,求f(x)的单调区间;
(2)求证:f(x)≥1恒成立的充要条件是a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式$-\sqrt{3}<tanx<2$的解集是(  )
A.$\left\{{x\left|{kπ-\frac{π}{3}<x<kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{kπ+arctan2<x<kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{2kπ-\frac{π}{3}<x<2kπ+arctan2\;,\;\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{2kπ+arctan2<x<2kπ+\frac{2π}{3}\;,\;\;k∈Z}\right.}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设正三棱锥A-BCD(底面是正三角形,顶点在底面的射影为底面中心)的所有顶点都在球O的球面上,BC=2,E,F分别是AB,BC的中点,EF⊥DE,则球O的表面积为(  )
A.$\frac{3π}{2}$B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-a)e-x,其中a为常数.
(1)判断f(x)在x=0处的切线是否经过一个定点,并说明理由;
(2)讨论f(x)在区间[-2,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={-1,0,1},B={x|x=sin$\frac{2k+1}{x}$,k∈Z},则∁AB=(  )
A.B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,一张A4纸的长、宽分别为2$\sqrt{2}$a,2a,A,B,C,D分别是其四条边的中点,现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,关于该多面体的下列命题,正确的是①②③④.(写出所有正确命题的序号).
①该多面体是三棱锥;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2

查看答案和解析>>

同步练习册答案