精英家教网 > 高中数学 > 题目详情
3.设F1和F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{21}}{7}$xD.y=±$\frac{\sqrt{21}}{3}$x

分析 设F1(-c,0),F2(c,0),则|F1P|=$\sqrt{{c}^{2}+4{b}^{2}}$,由F1、F2、P(0,2b)是正三角形的三个顶点可知|F1P|=$\sqrt{{c}^{2}+4{b}^{2}}$=2c,由此可求出b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,进而得到双曲线的渐近线方程.

解答 解:若F1,F2,P(0,2b)是正三角形的三个顶点,
设F1(-c,0),F2(c,0),则|F1P|=$\sqrt{{c}^{2}+4{b}^{2}}$,
∵F1、F2、P(0,2b)是正三角形的三个顶点,
∴$\sqrt{{c}^{2}+4{b}^{2}}$=2c,∴c2+4b2=4c2
∴c2+4(c2-a2)=4c2
∴c2=4a2,即c=2a,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,
∴双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{3}$x.
故选:B.

点评 本题考查双曲线的性质,主要是渐近线方程的求法,在解题时要注意审题,由F1、F2、P(0,2b)是正三角形的三个顶点建立方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow{b}$=(cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2-c2=ab,若f(A)-m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算$\frac{cos10°-\sqrt{3}cos(-100°)}{\sqrt{1-sin10°}}$=$\sqrt{2}$(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.1,则输出n的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动,“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车…”铿锵有力的话语,传递了低碳生活、绿色出行的理念.某机构随机调查了本市500名成年市民某月的骑车次数,统计如下:


[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18岁至30岁61420324048
31岁至44岁4620284042
45岁至59岁221833371911
60岁及以上1513101255
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.记本市一个年满18岁的青年人月骑车的平均次数为μ.以样本估计总体.
(Ⅰ)估计μ的值;
(Ⅱ)在本市老年人或中年人中随机访问3位,其中月骑车次数超过μ的人数记为ξ,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,输出的x的值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4,$\overrightarrow{b}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=0,若|λ$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值为2(λ∈R),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.0B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=2ln$\frac{3}{2}$、b=log2$\frac{1}{3}$、c=($\frac{1}{2}$)-0.3,则(  )
A.c<a<bB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,E上一点P到右焦点距离的最小值为1.
(1)求椭圆E的方程;
(2)过点(0,2)且倾斜角为60°的直线交椭圆E于A,B两点,求△AOB的面积.

查看答案和解析>>

同步练习册答案