精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:
①对于任意的实数x,f(x)和g(x)的函数值至少有一个小于0;
②在区间(-∞,-4)内存在实数x,使得f(x)g(x)<0成立;
则实数m的取值范围是(-4,-2).

分析 由于g(x)=2x-2≥0时,x≥1,根据题意有f(x)=m(x-2m)(x+m+3)<0在x>1时成立;由于x∈(-∞,-4),f(x)g(x)<0,而g(x)=2x-2<0,则f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)时成立.由此结合二次函数的性质可求出结果.

解答 解:解:对于①∵g(x)=2x-2,当x<1时,g(x)<0,
又∵①?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,
则$\left\{\begin{array}{l}{m<0}\\{-1-m<1}\\{2m<1}\end{array}\right.$,
∴-4<m<0即①成立的范围为-4<m<0.
又∵②x∈(-∞,-4),f(x)g(x)<0
∴此时g(x)=2x-2<0恒成立
∴f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)有成立的可能,则只要-4比x1,x2中的较小的根大即可,
(i)当-1<m<0时,较小的根为-m-3,-m-3<-4不成立,
(ii)当m=-1时,两个根同为-2>-4,不成立,
(iii)当-4<m<-1时,较小的根为2m,2m<-4即m<-2成立.
综上可得①②成立时-4<m<-2.
故答案为:(-4,-2).

点评 本题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知圆C:x2+y2+2x+4y+4=0,直线l:sinθx+cosθy-4=0,则直线,与圆C的位置关系为相离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$f(\frac{2}{x}+1)={x^2}$+1,则f(5)=(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.经过平面外两点可作与该平面平行的平面个数为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}中a4=32,an+1-an=8,则a1=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\overrightarrow a$=(1,1),$\overrightarrow b$=(-1,1),k$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$垂直,则k的值是(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列结论:
①(cos x)′=sin x;
②(sin$\frac{π}{6}$)′=cos$\frac{π}{6}$;
③若y=$\frac{1}{{x}^{2}}$,则y′=-$\frac{1}{x}$;
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-ax,(a∈R,x>0).
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.几何体ABCDEF如图所示,其中AC⊥AB,AC=3,AB=4,AE、CD、BF均垂直于面ABC,且AE=CD=5,BF=3,则这个几何体的体积为26.

查看答案和解析>>

同步练习册答案