精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为R,对一切x,y∈R,都有f(xy)=f(x)+f(y).
(1)判断函数的奇偶性;
(2)若f(4)=1,且f(x)在(0,+∞)是增函数,解不等式f(3x+1)+f(2x-6)≤3.
考点:抽象函数及其应用,函数奇偶性的性质,奇偶性与单调性的综合
专题:函数的性质及应用
分析:(1)利用赋值法,结合函数奇偶性的定义即可判断函数的奇偶性;
(2)根据函数的奇偶性和单调性之间的关系将不等式进行转化即可解不等式.
解答: 解:(1)∵对一切x,y∈R,都有f(xy)=f(x)+f(y).
∴当x=y=0时,f(0)=f(0)+f(0),则f(0)=0,
令y=1,则f(x)=f(x)+f(1),则f(1)=0,
令x=y=-1,则f(1)=f(-1)+f(-1)=0,
则f(-1)=0,
令y=-1,则f(-x)=f(x)+f(-1)=f(x),
即函数f(x)是偶函数;
(2)∵f(xy)=f(x)+f(y).
∴不等式f(3x+1)+f(2x-6)≤3.
等价为f[(3x+1)(2x-6)]≤3.
若f(4)=1,
则f(16)=f(4)+f(4)=1+1=2,
f(4)+f(16)=f(64)=1+2=3,
则f[(3x+1)(2x-6)]≤3.
等价为f[(3x+1)(2x-6)]≤f(64).
∵f(x)是偶函数且f(x)在(0,+∞)是增函数,
∴不等式等价为-64≤(3x+1)(2x-6)≤64.
即-64≤6x2-16x-6≤64.
6x2-16x+58≥0
6x2-16x-70≤0

3x2-8x+29≥0
(2x-10)(3x+7)≤0

解得-
7
3
≤x≤5
点评:本题主要考查抽象函数的应用,根据函数的奇偶性和单调性的定义和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关系式中,正确的是(  )
A、(sinx)′=cosx
B、(sinx)′=-cosx
C、(cosx)′=cosx
D、(cosx)′=sinsx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,向量
a
=(2,-1),
b
=(an+2n,an+1)且
a
b

(Ⅰ)求证数列{
an
2n
}为等差数列,并求{an}通项公式;
(Ⅱ)设bn=
an
n(n+1)2
,若对任意n∈N*都有bn
m2-3m
9
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的极坐标方程为ρ=
4
2
cos(θ+
π
4
)
,点P的直角坐标为(
3
cosθ
,sinθ),求点P到直线l距离的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ACB与△ADB是有公共斜边AB的两个等腰直角三角形,平面ACB⊥平面ADB,求异面直线AC与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

一场文艺晚会,有3个舞蹈,2个歌曲,4个小品,要求舞蹈和舞蹈、歌曲和歌曲不相邻,请问有多少种节目排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的上顶点为B1,左、右焦点为F1、F2,且F2和抛物线C2:y2=4x的焦点重合,△F1B1F2是正三角形.
(1)求椭圆C1的方程;
(2)过F2作直线l,与C1交于A、B两点,与C2交于C、D两点,求
S△F1CD
S△F1AB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+3(x≤0)
x2eax(x>0)

(Ⅰ)若a=-1,求函数f(x)的单调递增区间;
(Ⅱ)对任意的正实数m,关于x的方程f(x)=m恒有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:函数f(x)=2x+2-x在[0,+∞)上是单调递增函数;
(2)求函数f(x)=2x+2-x(x∈R)的值域;
(3)设函数g(x)=
4x+2x+k+1
4x+2x+1+1
,若对任意的实数x1,x2,x3,都有g(x1)+g(x2)≥g(x3),求实数k的取值范围.

查看答案和解析>>

同步练习册答案