精英家教网 > 高中数学 > 题目详情
登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:
气温x(°C)
18
13
10
-1
山高y(km)
24
34
38
64
由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为(  )
A.-10           B.-8         C.-6          D.-6
C
由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如下关系:
x
35
40
45
50
y
56
41
28
11
(1)画出散点图,并判断y与x是否具有线性相关关系?
(2)求日销售量y对销售单价x的线性回归方程;
(3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.

(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了了解高一年级学生的身高情况,某校按10%的比例对全校800名高一年级学生按性别进行抽样检查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190]
频数
2
5
14
13
4
2
 
表2:男生身高频数分布表
身高(cm)
[150,155)
[150,160)
[160,165)
[165,170)
[170,175)
[175,180]
频数
2
12
16
6
3
1
 
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:
转速x/(rad/s)
16
14
12
8
每小时生产有缺点的零件数y/件
11
9
8
5
若实际生产中,允许每小时的产品中有缺点的零件数最多为10个,那么机器的转速应该控制所在的范围是(   )
A.10转/s以下
B.15转/s以下
C.20转/s以下
D.25转/s以下

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是,求甲在初赛中答题个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

利用独立性检验来考虑两个分类变量是否有关系时,通过查阅下表来确定“有关系”的可信度。如果,那么就有把握认为“有关系”的百分比为(    )






















A.25%     B.95%      C.5%      D.97.5%

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:
 
杂质高
杂质低
旧设备
37
121
新设备
22
202
根据以上数据,则有________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某高校组织自主招生考试,共有2 000名优秀同学参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成8组:第1组[195,205),第2组[205,215),…,第8组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.

(1)估计所有参加笔试的2 000名同学中,参加面试的同学人数;
(2)面试时,每位同学抽取两个问题,若两个问题全答错,则不能取得该校的自主招生资格;若两个问题均回答正确且笔试成绩在270分以上,则获A类资格;其他情况下获B类资格.现已知某中学有两人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为,求恰有一名同学获得该高校B类资格的概率.

查看答案和解析>>

同步练习册答案