精英家教网 > 高中数学 > 题目详情
5.已知f(x)=(1+x)m+(1+2x)n (m,n∈N*)的展开式中x的系数为11,当x2的系数取得最小值时,f(x)展开式中x的奇次幂项的系数之和为30.

分析 由已知得${∁}_{m}^{1}+2{∁}_{n}^{1}$=11,可得:m+2n=11,x2的系数为${∁}_{m}^{2}$+22${∁}_{n}^{2}$=$(m-\frac{21}{4})^{2}$+$\frac{351}{16}$,由于m∈N*,可得m=5时,x2的系数取得最小值22,此时n=3.f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2+…+a5x5,分别令x=1,x=-1,即可得出.

解答 解:由已知得${∁}_{m}^{1}+2{∁}_{n}^{1}$=11,∴m+2n=11,
x2的系数为${∁}_{m}^{2}$+22${∁}_{n}^{2}$=$\frac{m(m-1)}{2}$+4×$\frac{n(n-1)}{2}$=$\frac{{m}^{2}-m}{2}$+(11-m)$(\frac{11-m}{2}-1)$=$(m-\frac{21}{4})^{2}$+$\frac{351}{16}$,
∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.
∴f(x)=(1+x)5+(1+2x)3
设这时f(x)的展开式为f(x)=a0+a1x+a2x2+…+a5x5
令x=1,a0+a1+a2+a3+a4+a5=25+33
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.
故答案为:30.

点评 本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求点P(1,0)到直线l:4x-3y+1=0的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地区退耕还林,第一年退200亩,从第二年起,每一年比前一年多退40亩,则8年后该地区退耕还林共多少亩?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O为△ABC的垂心,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则A角的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(2-$\sqrt{3}$x)10的展开式中,x10的系数是243.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设f(n)表示前n年的纯利润(f(n)=前n年的总收入-前n年的总费用支出-投资额),则f(n)=-n2+19n-60(用n表示);从第5年开始盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在2015-2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数$\frac{n}{N}$,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.

12345678910
$\frac{5}{13}$$\frac{4}{12}$$\frac{14}{30}$$\frac{5}{9}$$\frac{14}{19}$$\frac{10}{16}$$\frac{12}{23}$$\frac{4}{8}$$\frac{6}{13}$$\frac{10}{19}$
$\frac{13}{26}$$\frac{9}{18}$$\frac{9}{14}$$\frac{8}{16}$$\frac{6}{15}$$\frac{10}{14}$$\frac{7}{21}$$\frac{9}{16}$$\frac{10}{22}$$\frac{12}{20}$
根据统计表的信息:
(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在复数范围内,若方程2012x2+6x+9=0的一个根为α,则|α|=$\frac{3\sqrt{503}}{1006}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)$\frac{cosα}{sin\frac{α}{2}cos\frac{α}{2}}$;
(2)$\frac{4si{n}^{2}α}{1-cos2α}$.

查看答案和解析>>

同步练习册答案