分析 (I)根据平面几何知识得出AM⊥BM,根据面面垂直的性质得出BM⊥平面ADM,于是AD⊥BM;
(II)以M为原点,以MA,MB及平面ABCM的垂线为坐标轴建立空间直角坐标系,设AD=1,求出$\overrightarrow{AE}$和平面BDM的法向量$\overrightarrow{n}$,则|cos<$\overrightarrow{AE},\overrightarrow{n}$>|即为所求.
解答 证明:(I)∵四边形ABCD是矩形,AB=2AD,M为CD的中点
∴AM=BM=$\sqrt{2}$AD,
∴AM2+BM2=AB2,∴AM⊥BM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM,
∴BM⊥平面ADM,∵AD?平面ADM,
∴AD⊥BM.
(II)过M作平面ABCM的垂线Mz,
以M为原点,以MA,MB,Mz为坐标轴建立空间直角坐标系,如图所示:
设AD=1,则AM=BM=$\sqrt{2}$,
则M(0,0,0),A($\sqrt{2}$,0,0),B(0,$\sqrt{2}$,0),D($\frac{\sqrt{2}}{2}$,0,$\frac{\sqrt{2}}{2}$),E($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$).
∴$\overrightarrow{AE}$=(-$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{4}$),$\overrightarrow{MB}$=(0,$\sqrt{2}$,0),$\overrightarrow{MD}$=($\frac{\sqrt{2}}{2}$,0,$\frac{\sqrt{2}}{2}$).
设平面BMD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{MB}=0}\\{\overrightarrow{n}•\overrightarrow{MD}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{\sqrt{2}y=0}\\{\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(-1,0,1).
∴$\overrightarrow{n}•AE$=$\sqrt{2}$,
∴cos<$\overrightarrow{n},\overrightarrow{AE}$>=$\frac{\overrightarrow{n}•\overrightarrow{AE}}{|\overrightarrow{n}||\overrightarrow{AE}|}$=$\frac{2\sqrt{7}}{7}$.
∴AE与平面BDM所成角的正弦值为$\frac{2\sqrt{7}}{7}$.![]()
点评 本题考查了线面垂直的判定与性质,空间向量的应用,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正方形的直观图是正方形? | |
| B. | 平行四边形的直观图是平行四边形? | |
| C. | 有两个面平行,其余各面都是平行四边形的几何体叫棱柱 | |
| D. | 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{3}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| B. | 向左平移$\frac{π}{6}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| C. | 向右平移$\frac{π}{6}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| D. | 向左平移$\frac{π}{3}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是真命题且q是假命题 | B. | p是真命题且q是真命题 | ||
| C. | p是假命题且q是真命题 | D. | p是假命题且q是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com