精英家教网 > 高中数学 > 题目详情
已知数列{an}为等比数列,且满足a1=2,a4=
1
4
,则数列{an}所有项的和为
 
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:由已知得2q3=
1
4
,解得q=
1
2
,从而Sn=
2(1-
1
2n
)
1-
1
2
,数列{an}所有项的和S=
lim
n→∞
Sn
,由此能求出结果.
解答: 解:∵数列{an}为等比数列,且满足a1=2,a4=
1
4

∴2q3=
1
4
,解得q=
1
2

∴Sn=
2(1-
1
2n
)
1-
1
2

∴数列{an}所有项的和:
S=
lim
n→∞
Sn
=
lim
n→∞
2(1-
1
2n
)
1-
1
2
=
2
1-
1
2
=4.
故答案为:4.
点评:本题考查数列的所有项的值的求法,是基础题,解题时要注意等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-(a2-a)lnx-x(a≤
1
2
).
(1)若函数f(x)在2处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)设g(x)=a2lnx2-x,若f(x)>g(x)对?x>1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)(ω>0),f(x)=
m
n
且y=f(x)图象上一个最高点的坐标为(
π
12
,2),与之相邻的一个最低点的坐标为(
12
,-2)
(1)求y=f(x)的解析式
(2)求y=f(x)的递增区间
(3)若x∈[0,
π
2
]时,求y=f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx,若f′(x0)=3,则x0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设D在△ABC的BC边上,BD=
1
3
BC,若
AD
1
AB
2
AC
(λ1,λ2为实数),则λ12的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若式子σ(a,b,c)对任意a,b,c∈R,都有σ(a,b,c)=σ(c,a,b),则称σ(a,b,c)为轮换对称式,给出如下三个式子:
①σ(a,b,c)=abc;
②σ(a,b,c)=a2-b2+c2
③σ(A,B,C)=cosC•cos(A-B)-cos2C(A,B,C是△ABC的内角).
则其中所有轮换对称式的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知算法程序如下:

若输入变量n的值为3,则输出变量S的值为
 
;若输出变量S的值为30,则变量n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
2
2
t
y=
2
2
t+2
(其中t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,图C的极坐标方程为ρ=2
2
cos(θ+
π
4
),则过直线上的点向圆所引切线长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=xa(a为实常数)的图象过点(2,4),那么f(3)的值为
 

查看答案和解析>>

同步练习册答案