【题目】将这9个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上,现在第一张卡片上已经写有和,第二张卡片上写有,第三张卡片上写有,则应该写在第__________张卡片上;第三张卡片上的所有书组成的集合是__________.
科目:高中数学 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
Ⅰ若曲线在点处的切线与直线垂直,求函数的单调区间;
Ⅱ若对于都有成立,试求a的取值范围;
Ⅲ记当时,函数在区间上有两个零点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点A、B在直径上,点C、D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗),
(1)若要求圆柱体罐子的侧面积最大,应如何截取?
(2)若要求圆柱体罐子的体积最大,应如何截取?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底, 为常数).
(Ⅰ)讨论函数的单调性;
(Ⅱ)对于函数和,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线,设,问函数与函数是否存在“分界线”?若存在,求出常数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中,AB AC,点E,F分别在棱BB1,CC1上(均异于端点),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求证:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com