精英家教网 > 高中数学 > 题目详情
2.对于任意的整数n(n≥2),满足an=a+1,b2n=b+3a的正数a和b的大小关系是(  )
A.a>b>1B.b>a>1C.a>1,0<b<1D.0<a<1,b>1

分析 化简可得(an2=a2+2a+1,b2n=b+3a,而(a-b)(a2n-1+…+b2n-1)>a-b,从而解得.

解答 解:显然a>1,b>1;
(an2=a2+2a+1,b2n=b+3a,
∴(an2-b2n=a2-a+1-b>a-b,
即(a-b)(a2n-1+a2n-2b+…+b2n-1)>a-b,
∵a2n-1+…+b2n-1>1,
∴a-b>0,
故选A.

点评 本题考查了不等式的应用及二项式定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“log22x>0”是“x>1”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x2+bx+1满足f(-x)=f(x+1),若存在实数t,使得对任意实数x∈[l,m],都有f(x+t)≤x成立,则实数m的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+2cosx+a的最小值是1,则a的值为$1+\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和为${S_n}={4^n}+b$(b是常数,n∈N*),若这个数列是等比数列,则b等于(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),求f(-2008)+f(2009)的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.A、B是单位圆O上的动点,且A、B分别在第--象限,C是圆0与π轴正半轴的交点,△A0B为等腰直角三角形,记∠AOC=α.
(1)若A点的坐标为($\frac{3}{5}$,$\frac{4}{5}$),求$\frac{2sinα•sinα}{co{s}^{2}α+1-2si{n}^{2}α}$的值;
(2)求|BC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四边形ABCD中,∠ABC=∠ADC=90°,DF⊥AC于点E,交AB于点F.求证:AB•DF=AD•BD.

查看答案和解析>>

同步练习册答案