精英家教网 > 高中数学 > 题目详情
8.已知函数$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$,下面是关于此函数的有关命题,其中正确的有(  )
①函数f(x)是周期函数;
②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域为R,且其图象有对称轴;
④对于任意的x∈(-1,0),f'(x)<0(f'(x)是函数f(x)的导函数).
A.②③B.①③C.②④D.①②③

分析 将函数$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$=$\frac{sinπx}{{(x}^{2}+1)((x-1)^{2}+1})$,对以下各选项一次判断即可.

解答 解:由函数$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$=$\frac{sinπx}{{(x}^{2}+1)((x-1)^{2}+1})$
对于①函数f(x)显然不是周期函数.
对于②,因为sinπx有最值,函数f(x)的分母恒大于0,故f(x)有最大值又有最小值;②正确.
对于③,分母恒大于0,函数f(x)的定义域为R,sinπx是周期函数,其图象有对称轴,③正确.
对于④,f(-$\frac{1}{2}$)=-$\frac{16}{13}$,f(-$\frac{1}{3}$)=-$\frac{81\sqrt{3}}{500}$,∴f(-$\frac{1}{2}$)<f(-$\frac{1}{3}$),故④不正确,
故选A.

点评 本题考查命题的真假判断,考查三角函数知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.按照下列三种化合物的结构式及分子式的规律,归纳猜想出下一种化合物的分子式是(  )
A.C4H9B.C4H10C.C4H11D.C6H12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$z=\frac{3-i}{1+i}$(其中i是虚数单位),则|z+i|=(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是线段BF上一点,AB=AF=BC=2.
(Ⅰ)当GB=GF时,求证:EG∥平面ABC;
(Ⅱ)求二面角E-BF-A的余弦值;
(Ⅲ)是否存在点G,满足BF⊥平面AEG?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的通项${a_n}=2n+3({n∈{N^*}})$,数列{bn}的前n项和为${S_n}=\frac{{3{n^2}+7n}}{2}({n∈{N^*}})$,若这两个数列的公共项顺次构成一个新数列{cn},则满足cm<2012的m的最大整数值为(  )
A.335B.336C.337D.338

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据环境保护部《环境空气质量指数(AQI)技术规定》,空气质量指数(AQI)在201-300之间为重度污染;在301-500之间为严重污染.依据空气质量预报,同时综合考虑空气污染程度和持续时间,将空气重污染分4个预警级别,由轻到重依次为预警四级、预警三级、预警二级、预警一级,分别用蓝、黄、橙、红颜色标示,预警一级(红色)为最高级别.(一)预警四级(蓝色):预测未来1天出现重度污染;(二)预警三级(黄色):预测未来1天出现严重污染或持续3天出现重度污染;(三)预警二级(橙色);预测未来持续3天交替出现重度污染或严重污染;(四)预警一级(红色);预测未来持续3天出现严重污染.
某城市空气质量监测部门对近300天空气中PM2.5浓度进行统计,得出这300天PM2.5浓度的频率分布直方图如图,将PM2.5浓度落入各组的频率视为概率,并假设每天的PM2.5浓度相互独立.
(1)求当地监测部门发布颜色预警的概率;
(2)据当地监测站数据显示未来4天将出现3天严重污染,求监测部门发布红色预警的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-xlnx-2
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在区间[a,b]⊆[$\frac{1}{2}$,+∞),使f(x)在[a,b]上的值域是[k(a+2),k(b+2)],求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,直线l的方程为x+y-6=0,圆C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ+2\end{array}\right.({θ∈[{0,2π})})$,则圆心C到直线l的距离为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z=a+i的实部与虚部相等,则实数a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案