精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的通项${a_n}=2n+3({n∈{N^*}})$,数列{bn}的前n项和为${S_n}=\frac{{3{n^2}+7n}}{2}({n∈{N^*}})$,若这两个数列的公共项顺次构成一个新数列{cn},则满足cm<2012的m的最大整数值为(  )
A.335B.336C.337D.338

分析 求出数列{an}的通项${a_n}=2n+3({n∈{N^*}})$,数列{bn}的通项为bn=3n+2,从而得到cn=6n-1,由此能求出满足cm<2012的m的最大整数值.

解答 解:∵数列{an}的通项${a_n}=2n+3({n∈{N^*}})$,
数列{bn}的前n项和为${S_n}=\frac{{3{n^2}+7n}}{2}({n∈{N^*}})$,
∴${b}_{1}={S}_{1}=\frac{3+7}{2}$=5,
bn=Sn-Sn-1=3n+2,
n=1时,上式成立,∴bn=3n+2,
∵这两个数列的公共项顺次构成一个新数列{cn},
∴{cn}中的项分别为5,11,17,23,…,
∴cn=5+(n-1)×6=6n-1,
∵cm<2012,
∴cm=6m-1<2012,解得m<335$\frac{1}{2}$,
c335=6×335-1=2009,c336=6×336-1=2015,
∴满足cm<2012的m的最大整数值为335.
故选:A.

点评 本题考查满足条件的最大整数的求法,考查等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,P为棱BB1上的一个动点.
(1)求三棱锥C-PAA1的体积;
(2)当A1P+PC取得最小值时,求证:PD1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角”.

该表由若干数字组成,从第二行起,每一行的数字均等于其“肩上”两数之和,表中最后一行今有一个数,则这个数为(  )
A.2017×22016B.2017×22014C.2016×22017D.2016×22018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足$\overrightarrow{PM}$=$\overrightarrow{MP′}$,当P在圆C上运动时,点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且$\overrightarrow{AC}$=$\frac{3}{4}$$\overrightarrow{AD}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$,下面是关于此函数的有关命题,其中正确的有(  )
①函数f(x)是周期函数;
②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域为R,且其图象有对称轴;
④对于任意的x∈(-1,0),f'(x)<0(f'(x)是函数f(x)的导函数).
A.②③B.①③C.②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-2)lnx-ax+1.
(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,且取相同的长度单位.曲线C1:ρcosθ-2ρsinθ-7=0,和C2:$\left\{\begin{array}{l}x=8cosθ\\ y=3sinθ\end{array}\right.({θ为参数})$.
(1)写出C1的直角坐标方程和C2的普通方程;
(2)已知点P(-4,4),Q为C2上的动点,求PQ中点M到曲线C1距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为(  )
A.731B.809C.852D.891

查看答案和解析>>

同步练习册答案