精英家教网 > 高中数学 > 题目详情
16.如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF∥CE且AF=2CE,G是线段BF上一点,AB=AF=BC=2.
(Ⅰ)当GB=GF时,求证:EG∥平面ABC;
(Ⅱ)求二面角E-BF-A的余弦值;
(Ⅲ)是否存在点G,满足BF⊥平面AEG?并说明理由.

分析 (Ⅰ)当GB=GF时,根据线面平行的判定定理即可证明EG∥平面ABC;
(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角E-BF-A的余弦值;
(Ⅲ)根据线面垂直的判定定理和性质定理,建立条件关系即可得到结论.

解答 (Ⅰ)证明:取AB中点D,连接GD,CD,
又GB=GF,所以AF=2GD.
因为AF∥CE且AF=2CE,所以GD平行且等于CE,四边形GDCE是平行四边形,
所以CD∥EG因为EG?平面ABC,CD?平面ABC
所以EG∥平面ABC.
(Ⅱ)解:因为平面ABC⊥平面ACEF,平面ABC∩平面ACEF=AC,
且AF⊥AC,所以AF⊥平面ABC,
所以AF⊥AB,AF⊥BC
因为BC⊥AB,所以BC⊥平面ABF.
如图,以A为原点,建立空间直角坐标系A-xyz.
则F(0,0,2),B(2,0,0),C(2,2,0),E(2,2,1),$\overrightarrow{BC}$=(0,2,0)是平面ABF的一个法向量.
设平面BEF的法向量$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{2y+z=0}\\{-2x+2z=0}\end{array}\right.$
令y=1,则z=-2,x=-2,所以$\overrightarrow{n}$=(-2,1,-2),所以cos<$\overrightarrow{n}$,$\overrightarrow{BC}$>=$\frac{2}{2•\sqrt{4+1+4}}$=$\frac{1}{3}$,
由题知二面角E-BF-A为钝角,所以二面角E-BF-A的余弦值为-$\frac{1}{3}$.
(Ⅲ)解:因为$\overrightarrow{BF}•\overrightarrow{AE}$=(-2,0,2)•(2,2,1)=-20≠0,所以BF与AE不垂直,
所以不存在点G满足BF⊥平面AEG.

点评 本题主要考查线面平行的判定以及空间二面角的计算,建立空间直角坐标系,利用向量法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知△ABC三个内角A,B,C的对应边分别为α,b,c,且C=$\frac{π}{3}$,c=2.当$\overrightarrow{AC}•\overrightarrow{AB}$取得最大值时,$\frac{b}{a}$的值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\frac{e^x}{{{e^x}+1}}$,{an}为等比数列,an>0且a1009=1,则f(lna1)+f(lna2)+…+f(lna2017)=(  )
A.2007B.$\frac{1}{1009}$C.1D.$\frac{2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A、B、C的对边分别为a、b、c,且$cos({A-\frac{π}{3}})=2cosA$.
(1)若b=2,△ABC面积为$3\sqrt{3}$,求a;
(2)若$cos2C=1-\frac{a^2}{{6{b^2}}}$,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角”.

该表由若干数字组成,从第二行起,每一行的数字均等于其“肩上”两数之和,表中最后一行今有一个数,则这个数为(  )
A.2017×22016B.2017×22014C.2016×22017D.2016×22018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点$({\sqrt{3},4})$在直线l:ax-y+1=0上,则直线l的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\frac{sinπx}{{({{x^2}+1})({{x^2}-2x+2})}}$,下面是关于此函数的有关命题,其中正确的有(  )
①函数f(x)是周期函数;
②函数f(x)既有最大值又有最小值;
③函数f(x)的定义域为R,且其图象有对称轴;
④对于任意的x∈(-1,0),f'(x)<0(f'(x)是函数f(x)的导函数).
A.②③B.①③C.②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:若1<y<x,0<a<1,则 ${a^{\frac{1}{x}}}<{a^{\frac{1}{y}}}$,命题q:若1<y<x,a<0,则xa<ya.在命题①p且q②p或q③非p④非q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示程序框图,若输出的S=-46,则①处填入的条件可以是(  )
A.k<4?B.k<5?C.k>4?D.k>5?

查看答案和解析>>

同步练习册答案