精英家教网 > 高中数学 > 题目详情
8.如图,已知a、b、c分别是△ABC的内角A、B、C所对的边长,a=c,且满足cosC+(cosA-$\sqrt{3}$sinA)cosB=0,点O是△ABC外一点,OA=2OB=4,则平面四边形OACB面积的最大值是8+5$\sqrt{3}$.

分析 依题意,设∠AOB=θ,可求得△ABC为等边三角形,利用三角形的面积公式与余弦定理可求得SOACB=8sin(θ-$\frac{π}{3}$)+5$\sqrt{3}$,(0<θ<π),从而可求得平面四边形OACB面积的最大值.

解答 解:∵cosC+(cosA-$\sqrt{3}$sinA)cosB=0,
可得:cosAcosB-$\sqrt{3}$sinAcosB=cos(A+B)cosAcosB-sinAsinB,
∴$\sqrt{3}$sinAcosB=sinAsinB,
又∵A为三角形内角,sinA≠0,
∴可得:tanB=$\sqrt{3}$,
∴由B∈(0,π),可得:B=$\frac{π}{3}$,
又∵a=c,
∴△ABC为等边三角形;
∴SOACB=S△AOB+S△ABC
=$\frac{1}{2}$|OA|•|OB|sinθ+$\frac{1}{2}$×|AB|2×$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$×4×2×sinθ+$\frac{\sqrt{3}}{4}$(|OA|2+|OB|2-2|OA|•|OB|cosθ)
=4sinθ+$\frac{\sqrt{3}}{4}$(4+16-2×2×4×cosθ)
=4sinθ-4$\sqrt{3}$cosθ+5$\sqrt{3}$
=8sin(θ-$\frac{π}{3}$)+5$\sqrt{3}$,
∵0<θ<π,
∴-$\frac{π}{3}$<θ-$\frac{π}{3}$<$\frac{2π}{3}$,
∴当θ-$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{5π}{6}$时,sin(θ-$\frac{π}{3}$)取得最大值1,
∴平面四边形OACB面积的最大值为8+5$\sqrt{3}$.
故答案为:8+5$\sqrt{3}$.

点评 本题考查三角函数中的恒等变换应用,考查余弦定理的应用,求得SOACB=8sin(θ-$\frac{π}{3}$)+5$\sqrt{3}$是关键,也是难点,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知圆x2+y2=25,求过点A(4,一3)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F(1,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,且椭圆C上的点到点F的最大距离为$\sqrt{2}+1$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l1:y=kx+m,l2:y=kx-m,若l1,l2均与椭圆C相切,试在x轴上确定一点M,使点M到l1,l2的距离之积恒为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}是以a1为首项,q为公比的等比数列,对于给定的a1,满足q2-2a1q+2a1-1=0的数列{an}是唯一的,则首项a1=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}=(1,1)$,$\overrightarrow{b}$=($\sqrt{2}$,0),$\overrightarrow{c}$=(-2,$\sqrt{2}$),则$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{b}+\overrightarrow{c}$的位置关系是($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{b}$+$\overrightarrow{c}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,A=$\frac{π}{3}$,BC=3,求AC+AB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1并且垂直于x轴的直线为l,若过原点O和F2并和直线l相切的圆的半径等于点F2到双曲线C的两条渐近线的距离之和,则双曲线C的离心率为$\frac{4\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,过点P(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设O为坐标原点,是否存在常数λ,使得$\overrightarrow{OA}•\overrightarrow{OB}$+λ$\overrightarrow{PA}•\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{x^3},x≥0}\\{f(x+2),x<0}\end{array}}\right.$,则f(-5)=1.

查看答案和解析>>

同步练习册答案