精英家教网 > 高中数学 > 题目详情
2.设点M(1,y0),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则y0的取值范围是(  )
A.[-1,1]B.[-$\frac{1}{2},\frac{1}{2}$]C.[-$\sqrt{2},\sqrt{2}$]D.[-$\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$]

分析 根据直线和圆的位置关系,利用数形结合即可得到结论.

解答 解:由题意画出图形如图:由点M(1,y0),可得点M在直线x=1上.
要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,
则∠OMN的最大值大于或等于45°时,一定存在点N,使得∠OMN=45°,
而当MN与圆相切时∠OMN取得最大值,此时有MN=1,
图中只有M′到M″之间的区域满足MN=1,
∴y0的取值范围是[-1,1].
故选:A.

点评 本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.(a+b)n 展开式中第r项为$T_r=C_n^{r-1}a^{n+1-r}b^{r-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{1}{2}$x2+x-2lnx+a在区间(1,2)上恰有一个零点,则实数a的取值范围为2ln2-4<a<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有一个圆锥,其母线长为18cm,要使其体积最大,则该圆锥的高为(  )
A.8cmB.6$\sqrt{3}$cmC.8$\sqrt{3}$cmD.12cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(ax-1)ex+ax+1,其中e为自然对数的底数,a∈R.
(1)若曲线y=f(x)在点(0,f(0))处的切线与直线x-y+1=0平行,求a的值;
(2)若a=$\frac{1}{2}$,问函数f(x)有无极值点?若有,请求出极值点的个数,若没有,请说明理由;
(3)若?x>0,f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )
A.0.852B.0.8192C.0.75D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=x2+2ax-b2+4
(1)若a是从0,1,2三个数中任取的一个数,b是从-2,-1,0,1,2五个数中任取的一个数,求函数f(x)有零点的概率;
(2)若a是从区间[-3,3]上任取的一个数,b是从区间[0,3]上任取的一个数,求函数g(x)=f(x)+5无零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$,则a3=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a-c=$\frac{\sqrt{6}}{6}$b,sinB=$\sqrt{6}$sinC.
(Ⅰ)求cosA的值;
(Ⅱ)求cos(2A-$\frac{π}{3}$)的值.

查看答案和解析>>

同步练习册答案