精英家教网 > 高中数学 > 题目详情
13.函数f(x)=$\frac{1}{2}$x2+x-2lnx+a在区间(1,2)上恰有一个零点,则实数a的取值范围为2ln2-4<a<-$\frac{3}{2}$.

分析 由题设条件利用导数性质推导出f(x)在(1,2)上递增,要使f(x)在(1,2)上恰有一个零点,需要f(1)<0,f(2)>0,由此能求出实数a取值范围.

解答 解:∵f′(x)=x+1-$\frac{2}{x}$=$\frac{(x+2)(x-1)}{x}$,x∈(1,2),
∴f′(x)>0,f(x)在(1,2)递增,
若函数f(x)在(1,2)只有1个零点,
则$\left\{\begin{array}{l}{f(1)=\frac{3}{2}+a<0}\\{f(2)=4-2ln2+a>0}\end{array}\right.$,解得:2ln2-4<a<-$\frac{3}{2}$,
故答案为:$2ln2-4<a<-\frac{3}{2}$.

点评 本题考查利用导数研究函数的极值的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若$\frac{1-tanA}{1+tanA}$=4+$\sqrt{5}$,则tan(45°+A)=$\frac{4-\sqrt{5}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)已知曲线C:y=xex+tanα在 x=$\frac{π}{4}$处的切线与直线ax-y+1=0互相垂直,求实数a的值;
(Ⅱ)已知点P在曲线y=$\frac{4}{e^x+1}$上,角α为曲线在点P处的切线的倾斜角,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≥2\\ 2x+y≥2\\ x≥0,y≥0\end{array}\right.$则z=x+5y的最小值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$(ω>0)的最小正周期为3π.
(I)求函数f(x)在区间[-π,$\frac{3π}{4}$]上的最大值和最小值;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,且a<b<c,$\sqrt{3}$a=2csinA,求角C的大小;
(Ⅲ)在(II)的条件下,若f($\frac{3}{2}$A+$\frac{π}{2}$)=$\frac{11}{13}$,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平行六面体,AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,求|$\overrightarrow{A{C}_{1}}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中xOy,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(1,\frac{{\sqrt{3}}}{2})$,且椭圆E的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆E的方程;
(2)是否存在以A(0,-b)为直角顶点且内接于椭圆E的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点M(1,y0),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则y0的取值范围是(  )
A.[-1,1]B.[-$\frac{1}{2},\frac{1}{2}$]C.[-$\sqrt{2},\sqrt{2}$]D.[-$\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+2x+1,x1,x2是f(x)的两个极值点,且0<x1<1<x2<3,则实数a的取值范围为(3,$\frac{11}{3}$).

查看答案和解析>>

同步练习册答案