精英家教网 > 高中数学 > 题目详情

已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.
(1)求的值;
(2)若,求的值.

(1);(2)

解析试题分析:(1)由函数图像上相邻两个最高点的距离为求出周期,再利用公式求出的值;
由函数的图像关于直线对称,可得,然后结合,求出的值.
(2)由(1)知,由
结合利用同角三角函数的基本关系可求得的值,因为
可由两角和与差的三角函数公式求出从而用诱导公式求得的值.
解:(1)因的图象上相邻两个最高点的距离为,所以的最小正周期,从而.
又因的图象关于直线对称,所以

所以.
(2)由(1)得
所以.

所以
因此
=
考点:1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及在区间上的最大值和最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小正周期;
(2)求函数的最大值,并指出此时的值.
(3)求函数的单调增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足∠BO1A=,在小飞轮的边缘上有点C.设大飞轮逆时针旋转,传动开始时,点B,C在水平直线O1O2上.

(1)求点A到达最高点时A,C间的距离;
(2)求点B,C在传动过程中高度差的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当时,求在区间上的最大值与最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数的最小正周期和单调递增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.

(1)用β表示α;
(2)如果 sin β=,求点B(xB,yB)坐标;
(3)求xB-yB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)当时,求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案