精英家教网 > 高中数学 > 题目详情
6.已知双曲线$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)的离心率等于$\frac{\sqrt{3}}{3}$b,则该双曲线的焦距为(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.6D.8

分析 设双曲线$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)的焦距为2c,根据双曲线的几何性质求出c的值即可得焦距.

解答 解:设双曲线$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)的焦距为2c,
由已知得,a=2;
又离心率e=$\frac{c}{2}$=$\frac{\sqrt{3}}{3}$b,
且c2=4+b2
解得c=4;
所以该双曲线的焦距为2c=8.
故选:D.

点评 本题考查了双曲线的定义与简单几何性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若非零不等数列{an}的前n项和为Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,求证:数列{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线

(1)写出曲线的参数方程;

(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,直三棱柱ABC一A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥S-ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;
(3)求二面角C-SB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,现将半径为$\sqrt{2}$的球体放置于蛋巢上,则球体球心与蛋巢底面的距离为(  )
A.$\frac{\sqrt{2}+2}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{10}+\sqrt{2}}{2}$D.$\frac{\sqrt{10}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.
(1)求证:AD•AB=AE•AC;
(2)求线段BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在边长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在底面ABCD上移动,且满足B1P⊥D1E,则线段B1P的长度的最大值为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.2C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点E在△ABC的外接圆O上,AB=AC,$\widehat{AE}$=$\widehat{CE}$,AC交BE于点D,圆O的面积为S.
(1)证明:$\frac{AB}{BD}$=$\frac{BE}{BC}$;
(2)若△ABC的面积S1=$\frac{\sqrt{3}}{4}$BD•BE,证明:$\frac{S}{{S}_{1}}$=$\frac{4\sqrt{3}π}{9}$.

查看答案和解析>>

同步练习册答案