精英家教网 > 高中数学 > 题目详情
在运用计算机(器)作函数图象时,经常用到“符号函数”S(x)=
1,x≥0
0,x<0.
例如要表示分段函数g(x)=
x,x>2
-x,x<2
,可以将g(x)表示为g(x)=x•S(x-2)+(-x)•S(2-x)输入计算机,则计算机就会画出函数g(x)的图象.设f(x)=(-x2+4x-3)•S(x-1)+(x2-1)•S(1-x)(x≠1).
(1)请把函数y=f(x)写成分段函数的形式;
(2)画出函数y=f(x)的大致图象;
(3)设F(x)=f(x+k),是否存在实数k,使得F(x)为奇函数?若存在,写出满足条件的k值;若不存在,说明理由.
考点:分段函数的应用
专题:函数的性质及应用
分析:(1)分当x>1、当x=1和当x<1时3种情况加以讨论,分别根据S(x)的对应法则代入,可得f(x)相应范围内的表达式,最后综合可得函数f(x)写成分段函数的形式;
(2)画分段函数每一段的图象即可;
(3)根据第(2)问画的图象,结合函数图象的平移知识,使图象关于原点对称,即可得到奇函数.
解答: 解:(Ⅰ)分情况讨论:
①当x>1时,S(x-1)=1且S(1-x)=0,得f(x)=(-x2+4x-3)×1+(x2-1)×0=-x2+4x-3;
②当x=1时,S(x-1)=S(1-x)=1,得f(x)=(-x2+4x-3)×1+(x2-1)×1=4x-4;
③当x<1时,S(x-1)=0且S(1-x)=1,得f(x)=(-x2+4x-3)×0+(x2-1)×1=x2-1
f(x)=
-x2+4x-3,x>1
4x-4,x=1
x2-1,x<1

(2)函数y=f(x)的大致图象:

(3)若F(x)为奇函数,则F(x)的图象应关于原点对称,
因为k>0时,F(x)=f(x+k)的图象可以看成是把函数f(x)的图象向左平移k个单位得到,
又∵函数f(x)的图象关于点A(1,0)对称,∴只要把函数f(x)的图象向左平移1个单位后,图象就关于原点对称,
∴当k=1时,函数F(x)的图象应关于原点对称,则F(x)为奇函数.
点评:本题以分段函数和二次函数为载体,讨论函数的奇偶性,着重考查了基本初等函数的图象与性质、函数解析式的求解及常用方法和奇偶性与函数平移等有关知识的综合考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2-1
(a>0).
(1)判断函数的奇偶性;
(2)判断函数f(x)在(-1,1)上的单调性并证明;
(3)若函数的定义域和值域同时为[-
1
2
1
2
],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=1,过这个圆上任意一点P作y轴的垂线段PD,D为垂足,求线段PD的中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)
x-x0
>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=x2-6x+4lnx的“类对称点”的横坐标是(  )
A、1
B、
2
C、e
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x,y满足f(x+y2)=f(x)+2[f(y)]2,且f(1)≠0,则f(2013)=(  )
A、
2012
2
B、
2013
2
C、
2014
2
D、
2014
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alog2x+blog4x+2,且f(
1
2014
)=4,则f(2014)的值为(  )
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是直角梯形,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,求平面SCD的法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若2b=a+c,则a、b、c成等差数列;命题q:若b2=ac,则a、b、c成等比数列,则下列命题中是真命题的是(  )
A、¬p或qB、p且q
C、¬p且¬qD、¬p或¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且2
F1F2
+
F2Q
=
0

(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、Q、F2三点的圆恰好与直线x-
3
y-3=0相切,求椭圆C的方程;
(Ⅲ)过F2的直线l与(Ⅱ)中椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案