精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是直角梯形,∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,求平面SCD的法向量.
考点:平面的法向量
专题:空间向量及应用
分析:建立坐标系,可得
SC
SD
的坐标,设平面SCD的法向量为
n
=(x,y,z),可得
n
SC
=x+y-z=0
n
SD
=
1
2
x-z=0
,解方程组取z=1可得一个法向量.
解答: 解:由题意,以A为原点,分别以AD、AB、AS所在直线为x、y、z轴建立坐标系,
可得S(0,0,1),D(
1
2
,0,0),C(1,1,0),
SC
=(1,1,-1),
SD
=(
1
2
,0,-1),
设平面SCD的法向量为
n
=(x,y,z),
n
SC
=x+y-z=0
n
SD
=
1
2
x-z=0
,解得
x=2z
y=-z

取z=1可得平面SCD的一个法向量为
n
=(2,-1,1),
点评:本题考查平面法向量的求解,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点P(sin
π
6
,-cos
π
6
)在∠α的终边上,且-2π<α<0,则α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
9
+
y2
8
=1的左、右两个焦点分别为F1,F2,过F1作一直线交椭圆C于A,B两点.求△ABF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在运用计算机(器)作函数图象时,经常用到“符号函数”S(x)=
1,x≥0
0,x<0.
例如要表示分段函数g(x)=
x,x>2
-x,x<2
,可以将g(x)表示为g(x)=x•S(x-2)+(-x)•S(2-x)输入计算机,则计算机就会画出函数g(x)的图象.设f(x)=(-x2+4x-3)•S(x-1)+(x2-1)•S(1-x)(x≠1).
(1)请把函数y=f(x)写成分段函数的形式;
(2)画出函数y=f(x)的大致图象;
(3)设F(x)=f(x+k),是否存在实数k,使得F(x)为奇函数?若存在,写出满足条件的k值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x3-
9
2
x2+6x-a=0有且只有1个实数根,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)f(x)=x-2+
1-2x
,x∈[-
9
32
3
8
);    
(2)f(x)=
x
+1
x
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3x2+2(a-1)x-3在(-∞,1]上递减,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U={x|x是小于18的正质数},A∩(∁UB)={3,5},B∩(∁UA)={7,11},(∁UA)∩(∁UB)={2,17},则A=
 

查看答案和解析>>

同步练习册答案