ÉèÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬¹ýAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚQµã£¬ÇÒ2
F1F2
+
F2Q
=
0
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Èô¹ýA¡¢Q¡¢F2ÈýµãµÄԲǡºÃÓëÖ±Ïßx-
3
y-3=0ÏàÇУ¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ó£©¹ýF2µÄÖ±ÏßlÓ루¢ò£©ÖÐÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬Ôò¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°´ËʱµÄÖ±Ïß·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©ÀûÓÃA£¨0£¬b£©£¬F1ΪQF2µÄÖе㣮ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÔòQ£¨-3c£¬0£©£¬
AQ
=(-3c£¬-b)
ͨ¹ý
AQ
¡Í
AF2
£¬ÁгöcµÄ·½³Ì£¬Çó³öc£¬¼´¿ÉµÃµ½ÀëÐÄÂÊ£®
£¨¢ò£©ÀûÓÃRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±ÏßÏàÇУ¬ÍƳöd=r£¬Çó³öc=1£¬È»ºó¾À´ía£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ·½³Ì£®
£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃÉè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬µÃµ½¡÷F1MNµÄÖܳ¤Îª4a=8£¬±íʾ³ö¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý±í´ïʽ£¬ËµÃ÷R×î´ó£¬S¡÷F1MNÒ²×î´ó£®¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÓëÍÖÔ²ÁªÁ¢£¬Í¨¹ýΤ´ï¶¨Àí
»¯¼òS¡÷F1MN=
12
m2+1
3m2+4
£¬ÀûÓûù±¾²»µÈʽÇó³ö×îÖµ¼´¿É£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâA£¨0£¬b£©£¬F1ΪQF2µÄÖе㣮
ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÔòQ£¨-3c£¬0£©
AQ
=(-3c£¬-b)
£¬
AF2
=(c£¬-b)

ÓÉÌâ
AQ
¡Í
AF2
£¬¼´
AQ
AF2
=-3c2+b2=0
£¬¡à-3c2+£¨a2-c2£©=0¼´a2=4c2¡àe=
c
a
=
1
2

£¨¢ò£©ÓÉÌâRt¡÷QAF2Íâ½ÓÔ²Ô²ÐÄΪб±ßQF2µÄÖеãF1£¨-c£¬0£©£¬°ë¾¶r=2c£¬¡ßÓÉÌâRt¡÷QAF2Íâ½ÓÔ²ÓëÖ±Ïßx-
3
y-3=0
ÏàÇСàd=r£¬¼´
|-c-3|
2
=2c
£¬¼´c+3=4c¡àc=1£¬a=2c=2£¬b=
3
¹ÊËùÇóµÄÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1

£¨¢ó£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÓÉÌây1£¬y2ÒìºÅ£®
Éè¡÷F1MNµÄÄÚÇÐÔ²µÄ°ë¾¶ÎªR£¬Ôò¡÷F1MNµÄÖܳ¤Îª4a=8£¬S¡÷F1MN=
1
2
(|MN|+|F1M|+|F1N|)R=4R
£¬
Òò´ËҪʹ¡÷F1MNÄÚÇÐÔ²µÄÃæ»ý×î´ó£¬Ö»ÐèR×î´ó£¬´ËʱS¡÷F1MNÒ²×î´ó£®S¡÷F1MN=
1
2
|F1F2|•|y1-y2|=|y1-y2|
£¬
 ÓÉÌâÖª£¬Ö±ÏßlµÄбÂʲ»ÎªÁ㣬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÓÉ  
x=my+1
x2
4
+
y2
3
=1
µÃ£¨3m2+4£©y2+6my-9=0£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=
-6m
3m2+4
£¬y1y2=
-9
3m2+4
£¬£¨¡÷£¾0⇒m¡ÊR£©S¡÷F1MN=|y1-y2|=
(y1+y2)2-4y1y2
=
12
m2+1
3m2+4

Áît=
m2+1
£¬Ôòt¡Ý1S¡÷F1MN=
12t
3t2+1
=
12
3t+
1
t
£¨t¡Ý1£©£¬
µ±t=1ʱS¡÷F1MN=4RÓÐ×î´óÖµ3£®´Ëʱ£¬m=0£¬Rmax=
3
4

¹Ê¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýµÄ×î´óֵΪ
9¦Ð
16
£¬´ËʱֱÏßlµÄ·½³ÌΪx=1
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ»ù±¾ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÔËÓüÆËã»ú£¨Æ÷£©×÷º¯ÊýͼÏóʱ£¬¾­³£Óõ½¡°·ûºÅº¯Êý¡±S£¨x£©=
1£¬x¡Ý0
0£¬x£¼0.
ÀýÈçÒª±íʾ·Ö¶Îº¯Êýg£¨x£©=
x£¬x£¾2
-x£¬x£¼2
£¬¿ÉÒÔ½«g£¨x£©±íʾΪg£¨x£©=x•S£¨x-2£©+£¨-x£©•S£¨2-x£©ÊäÈë¼ÆËã»ú£¬Ôò¼ÆËã»ú¾Í»á»­³öº¯Êýg£¨x£©µÄͼÏó£®Éèf£¨x£©=£¨-x2+4x-3£©•S£¨x-1£©+£¨x2-1£©•S£¨1-x£©£¨x¡Ù1£©£®
£¨1£©Çë°Ñº¯Êýy=f£¨x£©Ð´³É·Ö¶Îº¯ÊýµÄÐÎʽ£»
£¨2£©»­³öº¯Êýy=f£¨x£©µÄ´óÖÂͼÏó£»
£¨3£©ÉèF£¨x£©=f£¨x+k£©£¬ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃF£¨x£©ÎªÆæº¯Êý£¿Èô´æÔÚ£¬Ð´³öÂú×ãÌõ¼þµÄkÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=3x2+2£¨a-1£©x-3ÔÚ£¨-¡Þ£¬1]Éϵݼõ£¬ÔòaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬PΪ¡÷ABCËùÔÚÆ½ÃæÍâÒ»µã£¬PA¡ÍPB£¬PB¡ÍPC£¬PC¡ÍPA£¬PH¡ÍÆ½ÃæABCÓÚH£¬ÇóÖ¤£ºHÊÇ¡÷ABCµÄ´¹ÐÄ£¬¡÷ABCΪÈñ½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf£¨x£©=lnx£¬Èô¶ÔËùÓеÄx¡Ê[e£¬+¡Þ£©¶¼ÓÐxf£¨x£©¡Ýax-a³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªcos£¨
¦Ð
3
-a£©=
3
3
£¬Çósin£¨
5¦Ð
6
-a£©+sin2£¨
2¦Ð
3
+a£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏU={x|xÊÇСÓÚ18µÄÕýÖÊÊý}£¬A¡É£¨∁UB£©={3£¬5}£¬B¡É£¨∁UA£©={7£¬11}£¬£¨∁UA£©¡É£¨∁UB£©={2£¬17}£¬ÔòA=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=log 
1
2
1-ax
x-1
 ÎªÆæº¯Êý£¬aΪ³£Êý£®
£¨1£©ÇóaµÄÖµ£¬²¢Óú¯ÊýµÄµ¥µ÷ÐÔ¶¨ÒåÖ¤Ã÷f£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£© ÄÚµ¥µ÷µÝÔö£»
£¨3£©Èô¶ÔÓÚÇø¼ä[3£¬4]ÉϵÄÿһ¸öµÄxÖµ£¬²»µÈʽf£¨x£©¡Ý£¨
1
2
£©x+mºã³ÉÁ¢£¬ÇóʵÊým×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
sinx(x£¼1)
x+a
x-4
(x¡Ý1)
£¬º¯Êýg£¨x£©=f£¨x£©-xÓÐÈý¸ö²»Í¬µÄÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢-
25
4
£¼a£¼-4
B¡¢a£¼-
25
4
C¡¢a£¾-
25
4
D¡¢-
25
4
£¼a£¼-5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸