精英家教网 > 高中数学 > 题目详情

【题目】给出以下命题:

①双曲线的渐近线方程为y=±x;

②命题p:“xR,sinx+≥2”是真命题;

③已知线性回归方程为=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;

④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;

⑤设,则

则正确命题的序号为________(写出所有正确命题的序号).

【答案】①③⑤

【解析】分析:①由双曲线标准方程可得渐近线方程;②根据均值不等式求最值等号成立的条件可得结果;③根据线性回归方程的含义可得结果;④根据正态分布的对称性可得结果;⑤根据对数函数的单调性可得结果.

详解:①由可以解得双曲线的渐近线方程为,正确;

②命题不能保证为正,故错误;

③根据线性回归方程的含义,正确;

,可得,所以,故错误;

⑤函数为增函数,因为所以,故正确.故答案为①③⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论函数的单调性;

(2)设,若存在正实数,使得对任意都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列各随机试验的样本空间:

1)采用抽签的方式,随机选择一名同学,并记录其性别;

2)采用抽签的方式,随机选择一名同学,观察其ABO血型;

3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;

4)射击靶3次,观察各次射击中靶或脱靶情况;

5)射击靶3次,观察中靶的次数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某地初中毕业升学体育考试规定:考生必须参加长跑.掷实心球.1分钟跳绳三项测试,三项测试各项20分,满分60分.某学校在初三上学期开始时,为掌握全年级学生1分钟跳绳情况,按照男女比例利用分层抽样抽取了100名学生进行测试,其中女生54人,得到下面的频率分布直方图,计分规则如表1:

(1)规定:学生1分钟跳绳得分20分为优秀,在抽取的100名学生中,男生跳绳个数大等于185个的有28人,根据已知条件完成表2,并根据这100名学生测试成绩,能否有99%的把握认为学生1分钟跳绳成绩优秀与性别有关?

附:参考公式

临界值表:

(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,全年级恰有2000名学生,所有学生的跳绳个数X服从正态分布N(μ,σ2)(用样本数据的平值和方差估计总体的期望和方差,各组数据用中点值代替)

①估计正式测试时,1分钟跳182个以上的人数(结果四舍五入到整数);

②若在全年级所有学生中任意选取3人,正式测试时1分钟跳195个以上的人数为ξ,求ξ占的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51?

(2)设一次订购量为个,零件的实际出厂单价为.写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①函数的单调增区间是

②若函数定义域为且满足,则它的图象关于轴对称;

③函数的值域为

④函数的图象和直线的公共点个数是,则的值可能是

⑤若函数上有零点,则实数的取值范围是.

其中正确的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解学生对电子竞技的兴趣,从该校高二年级的学生中随机抽取了人进行检查,已知这人中有名男生对电子竞技有兴趣,而对电子竞技没兴趣的学生人数与电子竞技竞技有兴趣的女生人数一样多,且女生中有的人对电子竞技有兴趣.

在被抽取的女生中与名高二班的学生,其中有名女生对电子产品竞技有兴趣,先从这名学生中随机抽取人,求其中至少有人对电子竞技有兴趣的概率;

完成下面的列联表,并判断是否有的把握认为“电子竞技的兴趣与性别有关”.

有兴趣

没兴趣

合计

男生

女生

合计

参考数据:

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.

查看答案和解析>>

同步练习册答案