精英家教网 > 高中数学 > 题目详情
20.已知Sn为数列{an}的前n项和,且满足2an-a1=S1•Sn(a1≠0,n∈N*),则a7=(  )
A.16B.32C.64D.128

分析 令n=1,2,代入所给的式子求得a1和a2,当n≥2时,再令n=n-1得到2an-1-1=Sn-1,两个式子相减得an=2an-1,判断出此数列为等比数列,进而求出通项公式,则a7可求.

解答 解:令n=1,得2a1-a1=${{a}_{1}}^{2}$,即${a}_{1}={{a}_{1}}^{2}$,
∵a1≠0,∴a1=1,
令n=2,得2a2-1=1•(1+a2),解得a2=2,
当n≥2时,由2an-1=Sn得,2an-1-1=Sn-1
两式相减得2an-2an-1=an,即an=2an-1
∴数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1
则${a}_{7}={2}^{6}=64$.
故选:C.

点评 本题考查了数列an与Sn之间的转化,考查了等比关系的确定,考查了等比数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=Asin(ωx+φ)(A≠0,ω>0,-$\frac{π}{2}<φ<\frac{π}{2})$的图象关于直线x=$\frac{2π}{3}$对称,它的最小正周期为π,则(  )
A.f(x)的图象过点$(0,\frac{1}{2})$B.f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上是减函数
C.f(x)的一个对称中心是$({\frac{5π}{12},0})$D.f(x)的一个对称中心是$({\frac{π}{6},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U=N*,集合A={2,3,6,8,9},集合B={x|x>3,x∈N*},则图中阴影部分所表示的集合是(  )
A.{2}B.{2,3}C.{1,2,3}D.{6,8,9}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2(a>0),g(x)=ex
(Ⅰ)求函数$φ(x)=\frac{g(x)}{f(x)}\;(x≠0)$的单调区间和极值;
(Ⅱ)若f(x),g(x)的图象存在公共切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设F1、F2是双曲线x2-$\frac{{y}^{2}}{24}$=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的周长24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正数m、n满足m2=a2+b2,n2=x2+y2,求ax+by的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PA⊥底面ABCD,BC=3,CD=2,AC=4,∠ACB=∠ACD=$\frac{π}{3}$,F为PC的中点,AF⊥PB.
(!)求PA的长;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=2x3-3x2-12x+8.
(1)求函数的增区间;     
(2)求函数在区间[-2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱锥P-ABC中,D是线段BC的中点,△ABC和△PAD所在的平面互相垂直,PA⊥AD,AF⊥PB,AB=2,AC=4,AD=$\sqrt{3}$,∠BAC=120°.
(1)证明:PB⊥AD;
(2)若∠AFD的大小为45°,求三棱锥P-ABC的体积.

查看答案和解析>>

同步练习册答案