精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:y2=2px(p>0),F是C的焦点,纵坐标为2的定点M在抛物线上,且满足$\overrightarrow{OM}$•$\overrightarrow{MF}$=-4,过点F作直线l与C相交于A,B两点,记A(x1,y1),B(x2,y2).
(1)求曲线C的方程;
(2)设l的斜率为1,求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的大小;
(3)设$\overrightarrow{FB}$=λ$\overrightarrow{AF}$,若λ∈[4,9],求l在y轴上截距的变化范围.

分析 (1)设M及F点坐标,求得向量$\overrightarrow{OM}$和$\overrightarrow{MF}$,根据向量的数量积的坐标表示求得p的值,即可求得抛物线方程;
(2)先根据抛物线方程求得焦点的坐标,进而可求得直线l的方程,代入抛物线方程消去,根据韦达定理及平面向量的数量积运算,可求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值;
(3)由向量数量积的坐标表示,得${y}_{2}^{2}$=λ2${y}_{1}^{2}$,由点A和B在抛物线上,得到B的坐标,根据焦点坐标可得直线的方程,进而求得直线在y轴上的截距,判断g(λ)=$\frac{2\sqrt{λ}}{λ-1}$,在[4,9]上是单调递减,即可l在y轴上截距的变化范围.

解答 解:(1)由题意可知M坐标为($\frac{4}{2p}$,2),F($\frac{p}{2}$,0)
由$\overrightarrow{OM}$=($\frac{4}{2p}$,2),$\overrightarrow{MF}$=($\frac{{p}^{2}-4}{2p}$,-2),
$\overrightarrow{OM}$•$\overrightarrow{MF}$=-4,即$\frac{4}{2p}$×$\frac{{p}^{2}-4}{2p}$-4=-4,解得:p=2,
曲线C的方程y2=4x;
(2)抛物线C的焦点为F(1,0),直线l的斜率为1,
∴l的方程为y=x-1,
将y=x-1代入方程y2=4x整理得:x2-6x+1=0,
由韦达定理可知:x1+x2=6,x1•x2=1,
∴y1+y2=4,y1•y2=-4,
cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{丨\overrightarrow{OA}丨丨\overrightarrow{OB}丨}$=$\frac{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}}{\sqrt{{x}_{1}^{2}+{y}_{1}^{2}}•\sqrt{{x}_{2}^{2}+{y}_{2}^{2}}}$=-$\frac{3\sqrt{41}}{41}$,
$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值为-$\frac{3\sqrt{41}}{41}$;
(3)由题设得:(x2-1,y2)=λ(1-x1,-y1),
即x2-1=λ(1-x1),y2=-λy1
整理得:${y}_{2}^{2}$=λ2${y}_{1}^{2}$,
∵${y}_{1}^{2}$=4x1,${y}_{2}^{2}$=4x2
∴x22x1
∴x2=λ根据题意有λ>0,
∴B(λ,2$\sqrt{λ}$)或B(λ,-2$\sqrt{λ}$),
又F(1,0),
得直线l的方程为(λ-1)y=2$\sqrt{λ}$(x-1)或(λ-1)y=-2$\sqrt{λ}$(x-1),
当λ∈[4,9],时,l在y轴上的截距为$\frac{2\sqrt{λ}}{λ-1}$或-$\frac{2\sqrt{λ}}{λ-1}$,
设g(λ)=$\frac{2\sqrt{λ}}{λ-1}$,λ∈[4,9],
∴g(λ)=$\frac{2\sqrt{λ}}{λ-1}$,在[4,9],上是递减,
∴$\frac{3}{4}$≤$\frac{2\sqrt{λ}}{λ-1}$≤$\frac{4}{3}$或-$\frac{4}{3}$≤-$\frac{2\sqrt{λ}}{λ-1}$≤-$\frac{3}{4}$,
∴直线l在y轴上截距的变化范围为$\frac{3}{4}$≤$\frac{2\sqrt{λ}}{λ-1}$≤$\frac{4}{3}$或-$\frac{4}{3}$≤-$\frac{2\sqrt{λ}}{λ-1}$≤-$\frac{3}{4}$.

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,一元二次方程根与系数的关系,向量数量积的坐标表示,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=3x3-x+a(a>0),若f(x)恰有两个零点,则a的值为$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx-ax2是减函数.
(Ⅰ)求a的取值范围;
(Ⅱ)证明:对任意n∈N,n>1,都有$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+…+$\frac{1}{nlnn}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{ln(x-1)}{x-2}$(x>2).
(Ⅰ) 判断函数f(x)的单调性;
(Ⅱ)若存在实数a,使得f(x)<a对?x∈(2,+∞)均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知PD⊥平面α,A∈α,B∈α,∠APB=90°,PA、PB与α所成角分别是30°,45°,PD=1,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正三棱锥P-ABC底面边长为6,底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是(  )
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知矩阵A=$[\begin{array}{l}{1}&{1}\\{1}&{1}\end{array}]$,求A10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,则|PA|2+|PB|2+|PC|2的最大值为88.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,E是CD的中点,D1E⊥BC.
(1)求证:四边形BCC1B1是矩形;
(2)若AA1=$\sqrt{2}$,BC=DE=D1E=1,求平面BCC1B1与平面BED1所成锐二面角的大小.

查看答案和解析>>

同步练习册答案