精英家教网 > 高中数学 > 题目详情

【题目】已知随机变量ξ的分布列为

ξ

﹣2

﹣1

0

1

2

3

P

若P(ξ2>x)= ,则实数x的取值范围是

【答案】[4,9)
【解析】解:由随机变量ξ的分布列,知:
ξ2的可能取值为0,1,4,9,
且P(ξ2=0)=
P(ξ2=1)= + =
P(ξ2=4)= + =
P(ξ2=9)=
∵P(ξ2>x)=
∴实数x的取值范围是[4,9).
所以答案是:[4,9).
【考点精析】通过灵活运用离散型随机变量及其分布列,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请在图中完成被调查人员年龄的频率分布直方图;

(2)若从年龄在 两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|(x﹣a),a为实数.
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;
(3)是否存在实数a(a<0),使得f(x)在闭区间 上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.
(1)求a;
(2)已知两个正数m,n满足m2+n2=a,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log3x.
(1)求f(45)﹣f(5)的值;
(2)若函数y=g(x)(x∈R)是奇函数,当x>0时,g(x)=f(x),求函数 y=g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某影院为了宣传影片《战狼Ⅱ》,准备采用以下几种方式来扩大影响,吸引市民到影院观看影片,根据以往经验,预测:

①分发宣传单需要费用1.5万元,可吸引30%的市民,增加收入4万元;

②网络上宣传,需要费用8千元,可吸引20%的市民,增加收入3万元;

③制作小视频上传微信群,需要费用2.5万元,可吸引35%的市民,增加收入5.5万元;

④与商场合作需要费用1万元,购物满800元者可免费观看影片(商场购票),可吸收15%的市民,增加收入2.5万元,

问: (1)在三个观看影片的市民中,至少有一个是通过微信群宣传方式吸引来的概率是多少?

(2)影院预计可增加盈利是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.
(1)讨论f(1)和f(﹣1)是函数f(x)的极大值还是极小值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

同步练习册答案