精英家教网 > 高中数学 > 题目详情
13.设全集U为整数集,集合A={x∈N|y=$\sqrt{7x-{x}^{2}-6}$},B={x∈Z|-1<x≤3},则图中阴影部分表示的集合的真子集的个数为(  )
A.3B.4C.7D.8

分析 根据Venn图和集合之间的关系进行判断.

解答 解:由Venn图可知,阴影部分的元素为属于B且属于A的元素构成,所以用集合表示为A∩B.
A={x∈N|y=$\sqrt{7x-{x}^{2}-6}$}={x∈N|7x-x2-6≥0}={x∈N|1≤x≤6}={1,2,3,4,5,6},
B={x∈Z|-1<x≤3}={0,1,2,3},
∴A∩B={1,2,3},
其真子集的个数为23-1=7
故选:C.

点评 本题主要考查Venn图表达 集合的关系和运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3
(1)求数列{an}和{bn}的通项公式;
(2)设Un=b1+b4+b7+…+b3n-2,其中n=1,2,…,求U10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{2^{2{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}^x,x>1\end{array}$则满足f(x)≤2的x取值范围是(  )
A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知loga2=m,loga3=n.
(1)求a2m-n的值;
(2)用m,n表示 loga18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定圆M:(x+$\sqrt{3}$)2+y2=16,动圆N过点F($\sqrt{3}$,0)且与圆M相切,记圆心N的轨迹为E.
(1)求轨迹E的方程;
(2)设直线x=ny+1与E交于P,Q两点,点P关于x轴的对称点为P1(P1与Q不重合),则直线P1Q与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)计算${({lg2})^2}+lg5•lg20+{({\sqrt{2016}})^0}+{0.027^{\frac{2}{3}}}×{({\frac{1}{3}})^{-2}}$;
(2)已知$\frac{3tanα}{tanα-2}=-1$,求$\frac{7}{{{{sin}^2}α+sinα•cosα+{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设点集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐标平面xoy内形成区域的边界构成曲线C,曲线C的中心为T,圆N:(x-2-5cosθ)2+(y-5sinθ)2=1,过圆N上任一点P分别作曲线C的两切线PE,PF,切点分别为E,F,则$\overrightarrow{TE}•\overrightarrow{TF}$的范围为[-$\frac{\sqrt{5}+1}{4}$,$\frac{\sqrt{5}-1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的参数方程为$\begin{array}{l}\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.\end{array}$(其中θ为参数),点M是曲线C1上的动点,点P在曲线C2上,且满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$.
(Ⅰ)求曲线C2的普通方程;
(Ⅱ)以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线θ=$\frac{2π}{3}$与曲线C1、C2分别交于A、B两点,求|AB|.

查看答案和解析>>

同步练习册答案