精英家教网 > 高中数学 > 题目详情
3.已知a=log0.55、b=log32、c=20.3、d=($\frac{1}{2}$)2,从这四个数中任取一个数m,使函数f(x)=$\frac{1}{3}$x3+mx2+x+2有极值点的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.

解答 解:f′(x)=x2+2mx+1,
若函数f(x)有极值点,
则f′(x)有2个不相等的实数根,
故△=4m2-4>0,解得:m>1或m<-1,
而a=log0.55<-2,0<b=log32<1、c=20.3>1,0<d=($\frac{1}{2}$)2<1,
满足条件的有2个,分别是a,c,
故满足条件的概率p=$\frac{2}{4}$=$\frac{1}{2}$,
故选:B.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.将乘积(a1+a2+a3+a4)(b1+b2)(c1+a2+a3)展开式多项式后的项数是(  )
A.4+2+3B.4×2×3C.5+3+4D.5×3×4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域
(1)f(x)=$\sqrt{x-1}$•$\sqrt{2-x}$
(2)$f(x)=\frac{{\sqrt{x-1}}}{2x-9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了解今年某省高三毕业班准备报考飞行员学生的体重情况,现采用随机抽样的方法抽取了一个样本容量为240的样本,并将所得的数据整理后,画出了如图所示的频率分布直方图(计算结果用分数表示).
(Ⅰ)求a的值,并用该样本估计全省报考飞行员学生的体重的中位数;
(Ⅱ)设A、B、C三名学生的体重在[55,60)内,M、N两名学生的体重在[70,75)内,现从这5名学生中任选两人参加座谈会,求M、N中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是各项均不相等的数列,Sn为它的前n项和,满足λnan+1=Sn+1(n∈N+,λ∈R).
(1)若a1=1,且a1,a2,a3成等差数列,求λ的值;
(2)若{an}的各项均不相等,问当且仅当λ为何值时,a2,a3,…,an,…成等差数列?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=a{log_2}x+b{log_3}x+2且f(\frac{1}{2008})=4,则f(2008)$的值为=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,则$f(f(\frac{1}{4}))$=(  )
A.9B.$\frac{1}{9}$C.$\frac{2}{9}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\int_0^2{(\sqrt{1-{{(x-1)}^2}}}-x)dx$=$\frac{π}{2}$-2.

查看答案和解析>>

同步练习册答案