精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是[-3,0].

分析 通过当a=0时,当a>0时,当a<0时,分别判断函数的单调性,求解实数a的取值范围.

解答 解:当a=0时,f(x)=-3x+1,满足题意;
当a>0时,函数f(x)在对称轴右侧单调递增,不满足题意;
当a<0时,函数f(x)的图象的对称轴为x=-$\frac{a-3}{2a}$,
∵函数f(x)在区间[-1,+∞)上单调递减,
∴-$\frac{a-3}{2a}$≤-1,得-3≤a<0.
综上可知,实数a的取值范围是[-3,0].

点评 本题考查二次函数的性质的应用,考查分类讨论思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,则z=y+2x的最大值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=log0.55、b=log32、c=20.3、d=($\frac{1}{2}$)2,从这四个数中任取一个数m,使函数f(x)=$\frac{1}{3}$x3+mx2+x+2有极值点的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:
16进制0123456789ABCDEF
10进制0123456789101112131415
例如用16进制表示D+E=1B,则E×B=(  )
A.6EB.7CC.8FD.9A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a4=8,a6=12.
(1)求数列{an}的通项公式;
(2)若Sn=20,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为144.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
是否
优良
班级
优良
(人数)
非优良
(人数)
合计
合计
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
P(K2≥k)0.100.050.010
k2.7063.8416.635
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线x2=4y的焦点到准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是$\frac{1}{5}$,且相互独立,则至少两人译出密码的概率为$\frac{13}{125}$.

查看答案和解析>>

同步练习册答案