精英家教网 > 高中数学 > 题目详情

已知点是圆上的点
(1)求的取值范围.
(2)若恒成立,求实数的取值范围.

(1);(2)

解析试题分析:(1)圆配方为,设,把代入中,转化为三角函数的值域问题,或者可设=,再与圆的方程联立,消去,得关于的一元二次方程,利用列不等式,得的范围;(2)把代入中,转化为三角函数的最小值问题,且最小值,该题还可以数形结合,表示直线=0上方的平面区域,只要让圆落在区域内即可.
试题解析:(1)圆可化为    依题意:设

即:的取值范围是                                   6分
(2)依题意:设 
  

又∵恒成立 ∴ ∴a的取值范围是  12分
考点:1、圆的方程;2、利用恒成立问题确定参数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动圆经过点
(Ⅰ)当圆面积最小时,求圆的方程;
(Ⅱ)若圆的圆心在直线上,求圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点M(3,1),直线与圆
(1)求过点M的圆的切线方程;
(2)若直线与圆相切,求a的值;
(3)若直线与圆相交与A,B两点,且弦AB的长为,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆A过点,且与圆B:关于直线对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。
(3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4,
(1)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(2)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C: 直线
(1)证明:不论取何实数,直线与圆C恒相交;
(2)求直线被圆C所截得的弦长的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在轴上截得线段长为.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
在直角坐标系中,直线为参数),在极坐标系中(以原点为极点,以轴正半轴为极轴),圆C的方程:
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于两点,点的坐标,求

查看答案和解析>>

同步练习册答案