精英家教网 > 高中数学 > 题目详情
5.已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为$\frac{π}{2}$,直线$x=\frac{π}{3}$是其图象的一条对称轴,则符合条件的函数解析式是(  )
A.$y=4sin(4x+\frac{π}{6})$B.$y=2sin(2x+\frac{π}{3})+2$C.$y=2sin(4x+\frac{π}{3})+2$D.$y=2sin(4x+\frac{π}{6})+2$

分析 由题意可得A+m=4,A-m=0,解得 A 和m的值,再根据周期求出ω,根据函数图象的对称轴及φ的范围求出φ,从而得到符合条件的函数解析式.

解答 解:由题意可得A+m=4,A-m=0,解得 A=2,m=2.
再由最小正周期为$\frac{π}{2}$,可得$\frac{2π}{ω}$=$\frac{π}{2}$,解得ω=4,
∴函数y=Asin(ωx+φ)+m=2sin(4x+φ)+2.
再由 x=$\frac{π}{3}$是其图象的一条对称轴,可得 4×$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,又|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
故符合条件的函数解析式是 y=2sin(4x+$\frac{π}{6}$)+2,
故选D.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.同时抛掷两颗均匀的骰子,请回答以下问题:
出现2点出现其他点合计
甲骰子20160180
乙骰子30150180
合计50310360       
(1)填空:两颗骰子都出现2点的概率为$\frac{1}{36}$;
(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,
①根据以上数据,完成如表的2×2的列联表;
②提出假设H0:两颗骰子出现2点无关,请根据所学的统计知识,说明两颗骰子出现两点是否相关?若无关,请说理,若相关,请回答我们有多大的把握认为两颗骰子出现两点相关?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}{4-8|x-\frac{3}{2}|,1≤x≤2}\\{\frac{1}{2}f(\frac{x}{2}),x>2}\end{array}\right.$,函数y=xf(x)-6在[1,16]内零点之和为(  )
A.$\frac{45}{2}$B.23C.$\frac{47}{2}$D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若两个相似的三角形的对应高度的比为2:3,且周长的和为50cm,则这两个相似三角形的周长分别为20cm,30cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|(5x+1)(2-x)<0},B={x|x<4},则A∩B等于(  )
A.(-∞,4)B.(-$\frac{1}{5}$,2)C.(2,4)D.(-∞,-$\frac{1}{5}$)∪(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中,正确的是(  )
A.有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱
B.棱柱中互相平行的两个面叫做棱柱的底面
C.棱柱的侧面是平行四边形,而底面不是平行四边形
D.棱柱的侧棱都相等,侧面是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α,β是方程4x2-4mx+m+2=0的两个实数根.
(1)求m的取值范围;
(2)若f(x)=α22,求f(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正方体ABCD-A1B1C1D1 的棱长为1,E为A1B1 的中点,则下列四个命题:
①点E到平面ABC1D1 的距离为$\frac{1}{2}$;
②直线BC与平面ABC1D1 所成的角等于45°
③空间四边形ABCD1 在正方体六个面内形成六个射影,其面积最小值是$\frac{1}{2}$
④AE与DC所成角的余弦值为$\frac{\sqrt{5}}{5}$
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.$f(α)=\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-α)sin(\frac{π}{2}+α)}}$
(1)化f(α)为最简形式
(2)f(α)=-2,求sin2α-sinαcosα-2cos2α

查看答案和解析>>

同步练习册答案