14£®Õý·½ÌåABCD-A1B1C1D1 µÄÀⳤΪ1£¬EΪA1B1 µÄÖе㣬ÔòÏÂÁÐËĸöÃüÌ⣺
¢ÙµãEµ½Æ½ÃæABC1D1 µÄ¾àÀëΪ$\frac{1}{2}$£»
¢ÚÖ±ÏßBCÓëÆ½ÃæABC1D1 Ëù³ÉµÄ½ÇµÈÓÚ45¡ã
¢Û¿Õ¼äËıßÐÎABCD1 ÔÚÕý·½ÌåÁù¸öÃæÄÚÐγÉÁù¸öÉäÓ°£¬ÆäÃæ»ý×îСֵÊÇ$\frac{1}{2}$
¢ÜAEÓëDCËù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{5}}{5}$
ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

·ÖÎö ÔÚ¢ÙÖУ¬Eµ½ÃæABC1D1µÄ¾àÀëµÈÓÚB1µ½ÃæABC1D1µÄ¾àÀëΪ$\frac{1}{2}$B1C£»ÔÚ¢ÚÖУ¬BCÓëÃæABC1D1Ëù³ÉµÄ½Ç¼´Îª¡ÏCBC1£»ÔÚ¢ÛÖУ¬ÔÚËĸöÃæÉϵÄͶӰ»òΪÕý·½ÐλòΪÈý½ÇÐΣ®×îСΪÈý½ÇÐΣ»ÔÚ¢ÜÖУ¬¡ÏEABÊÇAEÓëDCËù³É½Ç£®

½â´ð ½â£ºÔÚ¢ÙÖУ¬E¡ÊA1B1£¬A1B1¡ÎÃæABC1D1£¬¡àEµ½ÃæABC1D1µÄ¾àÀëµÈÓÚB1µ½ÃæABC1D1µÄ¾àÀëΪ$\frac{1}{2}$B1C=$\frac{\sqrt{2}}{2}$£®¹Ê¢Ù´íÎó£»
ÔÚ¢ÚÖУ¬BCÓëÃæABC1D1Ëù³ÉµÄ½Ç¼´Îª¡ÏCBC1=45¡ã£¬¹Ê¢ÚÕýÈ·£»
ÔÚ¢ÛÖУ¬ÔÚËĸöÃæÉϵÄͶӰ»òΪÕý·½ÐλòΪÈý½ÇÐΣ®×îСΪÈý½ÇÐΣ¬Ãæ»ýΪ$\frac{1}{2}$£¬¹Ê¢ÛÕýÈ·£»
ÔÚ¢ÜÖУ¬¡ßDC¡ÎAB£¬¡à¡ÏEABÊÇAEÓëDCËù³É½Ç£¬
È¡ABÖеãF£¬Á¬½áEF£¬ÔòAF=$\frac{1}{2}$£¬AE=$\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$£¬
¡àcos¡ÏEAB=$\frac{AF}{AE}$=$\frac{\frac{1}{2}}{\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{5}$£®¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÕý·½Ìå½á¹¹ÌØÕ÷¡¢µãµ½Æ½ÃæµÄ¾àÀë¡¢ÏßÃæ½Ç¡¢Í¶Ó°Ãæ»ý¡¢ÒìÃæÖ±ÏßËù³É½ÇµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÇúÏßy=2x3+x2+5 Ôڵ㣨1£¬8£©´¦µÄÇÐÏß·½³Ì8x-y=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýy=Asin£¨¦Øx+¦Õ£©+m£¨A£¾0£¬¦Ø£¾0£©µÄ×î´óֵΪ4£¬×îСֵΪ0£¬×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£¬Ö±Ïß$x=\frac{¦Ð}{3}$ÊÇÆäͼÏóµÄÒ»Ìõ¶Ô³ÆÖᣬÔò·ûºÏÌõ¼þµÄº¯Êý½âÎöʽÊÇ£¨¡¡¡¡£©
A£®$y=4sin£¨4x+\frac{¦Ð}{6}£©$B£®$y=2sin£¨2x+\frac{¦Ð}{3}£©+2$C£®$y=2sin£¨4x+\frac{¦Ð}{3}£©+2$D£®$y=2sin£¨4x+\frac{¦Ð}{6}£©+2$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|x-3|+|x+m|£¨x¡ÊR£©£®
£¨1£©µ±m=1ʱ£¬Çó²»µÈʽf£¨x£©¡Ý6µÄ½â¼¯£»
£¨2£©Èô²»µÈʽf£¨x£©¡Ü5µÄ½â¼¯²»Êǿռ¯£¬Çó²ÎÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈçͼËùʾΪº¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0¡Ü¦Õ¡Ü¦Ð£©µÄ²¿·ÖͼÏ󣬯äÖÐA£¬BÁ½µãÖ®¼äµÄ¾àÀëΪ5£¬ÄÇôf£¨-1£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª$f£¨x£©=\frac{x}{1+x}$£¬x¡Ý0£¬Èôf1£¨x£©=f£¨x£©£¬fn£¨x£©=f£¨fn-1£¨x£©£©£¬n¡ÊN+£¬Ôòf2014£¨x£©µÄ±í´ïʽΪ$\frac{x}{1+2014x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®º¯Êýf£¨x£©=x3+2lnx£¬Ôòf'£¨1£©µÄֵΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx-1ÔÚx=1´¦Óм«Ð¡Öµ-5£®
£¨1£©ÊÔÇóa£¬bµÄÖµ£¬²¢Çó³öf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=2m-1ÓÐ3¸ö²»Í¬µÄʵ¸ù£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{1+a}{x}$-alnx£¬a¡ÊR£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÈôÔÚÇø¼ä[1£¬e]ÉÏ´æÔÚÒ»µãx0£¬Ê¹µÃx0+$\frac{1}{{x}_{0}}$£¼a£¨lnx0-$\frac{1}{{x}_{0}}$£©³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸