精英家教网 > 高中数学 > 题目详情
4.求双曲线25x2-y2=-25的实轴长,虚轴长、焦点和顶点坐标及离心率,渐近线方程.

分析 把双曲线方程化为标准方程,分别求出a,b,c,由此能求出此双曲线的实轴长,虚轴长、焦点和顶点坐标及离心率,渐近线方程.

解答 解:∵双曲线方程25x2-y2=-25,
∴双曲线的标准方程为:$\frac{{y}^{2}}{25}-{x}^{2}$=1,
∴a=5,b=1,c=$\sqrt{26}$
∴该双曲线的实轴长10,虚轴长2,焦点(0,±$\sqrt{26}$),顶点(±5,0),(0,±1),渐近线:y=±5x

点评 本题考查双曲线的简单性质,是基础题,解题时把双曲线方程转化为标准方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知方程x2+y2-4(m+1)x+2(1-m2)y+m4-1=0表示一个圆.
(1)求m的取值范围;
(2)若直线l:x+y=0与圆交于A、B两点,圆心到直线l的距离为2$\sqrt{2}$,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C的方程为$\frac{x^2}{4}-\frac{y^2}{5}=1$,其左、右焦点分别是F1、F2.已知点M坐标为(2,1),双曲线C上点 P(x0,y0)(x0>0,y0>0)满足$\frac{{\overrightarrow{{P}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{P}{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,则${S_{△{P}{M}{F_1}}}-{S_{△{P}{M}{F_2}}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设[x]表示不超过x的最大整数,若[π]=3,[-1.2]=-2.给出下列命题:
①对任意的实数x,都有x-1<[x]≤x.
②对任意的实数x、y,都有[x+y]≥[x]+[y].
③[lg1]+[lg2]+[lg3]+…+[lg2014]+[lg2015]=4940.
④若函数f(x)=[x[x]],当x∈[0,n)(n∈N*)时,令f(x)的值域为A,记集合A中元素个数为an,则$\frac{{a}_{n}+49}{n}$的最小值为$\frac{19}{2}$,其中所有真命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,圆C:x2-(1+a)x+y2-ay+a=0.
(1)若圆C的半径为$\frac{1}{2}$,求圆C的方程;
(2)已知a>1,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M任作一条直线与圆O:x2+y2=4相交于两点A,B.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求不等式a-2x+1>ax-5(a>0且a≠1)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(文)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=($\frac{1}{2}$)x的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证:数列{sn}是公比绝对值小于1的等比数列;
(2)设数列{an}的首项为p=-1,公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3))设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.当动点P在圆x2+y2=2上运动时,它与定点A(3,1)连线的中点Q的轨迹方程是(2x-3)2+(2y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠B=30°,AC=2$\sqrt{5}$,D是边AB上一点.
(1)求△ABC的面积的最大值;
(2)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.

查看答案和解析>>

同步练习册答案