如图,在四棱锥中,底面,,,,
.
(1)若E是PC的中点,证明:平面;
(2)试在线段PC上确定一点E,使二面角P- AB- E的大小为,并说明理由.
(1)先证,再证,利用线面垂直的判定定理即可证明
(2)
解析试题分析:(1)证明:,,,
又,,, , 4 分
,,
又中,,,,
又是PC中点,
7分
(2)过E作交AC于G,过G作GH⊥AB,垂足为H,则由知 ,,是二面角的平面角的余角,即. 10分
设,,则, 12分
,
,
14分
方法二(向量法)
如图,分别以为x,y,z轴建立空间直角坐标系,设
,则A(0,0,0),B(2,0,0),P(0,0,2),C(1,,0),E() 9分
设平面的一个法向量,则
由及得) 11分
而平面PAB的一法向量, 12分
,解得,即 14分
考点:本小题主要考查空间中线面垂直的证明和二面角的求解.
点评:解决立体几何问题,可以用判定定理和性质定理进行证明,也可以用空间向量求解,两种方法各有利弊,注意用传统的方法证明或求解时,要紧扣相应的判定定理和性质定理,定理中要求的条件缺一不可,而如果用向量解决问题,要注意各个量尤其是角的取值范围.
科目:高中数学 来源: 题型:解答题
如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。
(I)求证:A1B∥平面AMC1;
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:OF//平面ACD;
(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.
(1) 求证:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com