如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。
(I)求证:A1B∥平面AMC1;
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
科目:高中数学 来源: 题型:解答题
如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,
(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.
(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DM与SB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。
求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面,,,,
.
(1)若E是PC的中点,证明:平面;
(2)试在线段PC上确定一点E,使二面角P- AB- E的大小为,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com