精英家教网 > 高中数学 > 题目详情
若m、n表示直线,α、β表示平面,则下列四个命题中:
(1)若m∥α,则对任意的n?α,都有m∥n
(2)若实数t1,t2满足t1•t2≠6,则t1≠2或t2≠3
(3)若k>3,则方程
x2
k-3
-
y2
k+3
=1表示双曲线
(4)若α⊥β,α∩β=l,m⊥l,则m⊥β
正确命题是
 
(请填正确的序号)
考点:命题的真假判断与应用
专题:空间位置关系与距离
分析:(1)由m∥α,对任意的n?α,利用线面平行的性质定理可得:m∥n或为异面直线;
(2)由实数t1,t2满足t1•t2≠6,可利用其逆否命题t1≠2或t2≠3;
(3)由k>3,可得k+3>0,k-3>0,利用双曲线的标准方程即可判断出;
(4)利用面面垂直的性质定理即可得出.
解答: 解:(1)若m∥α,则对任意的n?α,则m∥n或为异面直线,因此不正确;
(2)若实数t1,t2满足t1•t2≠6,利用逆否命题可知t1≠2或t2≠3,正确;
(3)若k>3,则k+3>0,k-3>0,可得方程
x2
k-3
-
y2
k+3
=1表示双曲线,正确;
(4)若α⊥β,α∩β=l,m⊥l,若m?α或m∥α,才可能有m⊥β,因此不正确.
综上可知:只有(2)(3)正确.
故答案为:(2)(3).
点评:本题综合考查了线面、面面平行与垂直的性质定理、双曲线的标准方程等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥DC,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BC⊥平面PBD:
(Ⅱ)求直线AP与平面PDB所成角的正弦值;
(Ⅲ)设E为侧棱PC上异于端点的一点,
PE
PC
,试确定λ的值,使得二面角E-BD-P的余弦值为
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足
x-y+3≥0
x+y-1≥0
x≤1
,若直线x+ky-1=0将可行域分成面积相等的两部分,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数f(x)在[0,1]是减函数,在[1,2]是增函数;
②函数y=f(x)在x=2取到极小值;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
其中所有正确命题是
 
(写出正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的周长为定值l,写出扇形的面积y关于其半径x的函数解析式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①3≥3
x+
1
x
≥2 (x∈R )

③“若x>3,则x2>9”的否命题
④“若a≤1,则方程ax2+2x+1=0至少有一个负根”的逆否命题.
则其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=
3
sin2x-cos2x的图象向左平移|m|个单位(m>-
π
2
),若所得的图象关于直线x=
π
6
对称,则m的最小值为(  )
A、-
π
3
B、-
π
6
C、0
D、
π
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z满足(3-4i)z=|4+3i|(i为虚数单位),则z的虚部为(  )
A、-4
B、-
4
5
C、4
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项为非负实数,前n项和为Sn,且S
 
2
n
-n2Sn-(n2+1)=0
(1)求数列{an}的通项公式;
(2)当n≥2时,求
1
S2-2
+
1
S3-2
+
1
S4-2
+…+
1
Sn-2

查看答案和解析>>

同步练习册答案