精英家教网 > 高中数学 > 题目详情
已知扇形的周长为定值l,写出扇形的面积y关于其半径x的函数解析式
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:由题意可得扇形的弧长为l-2x,可得扇形的面积为y=
1
2
(l-2x)x,由实际意义可得
l-2x>0
l-2x<2πx
,解不等式组可得定义域.
解答: 解:由题意,扇形的半径为x,周长为l,则扇形的弧长为l-2x,
∴扇形的面积为y=
1
2
(l-2x)x,
l-2x>0
l-2x<2πx
,解得
l
2+2π
<x<
l
2

∴所求函数的解析式为:y=
1
2
(l-2x)x,x∈(
l
2+2π
l
2

故答案为:y=
1
2
(l-2x)x,x∈(
l
2+2π
l
2
点评:本题考查函数解析式的求解,涉及扇形的面积公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知2f(x)+f(-x)=3x+2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

7个人排成一行,甲、乙都与丙不相邻,有
 
种不同排法.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称.
⑤设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
5
2
)=-
1
2

其中正确的有
 
(把你认为正确的序号全写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
e1
e2
不共线,
AB
=3(
e1
+
e2
),
CB
=
e2
-
e1
CD
=2
e1
+
e2
,给出下列结论:
①A,B,C共线;
②A,B,D共线;
③B,C,D共线;
④A,C,D共线,
其中所有正确结论的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若m、n表示直线,α、β表示平面,则下列四个命题中:
(1)若m∥α,则对任意的n?α,都有m∥n
(2)若实数t1,t2满足t1•t2≠6,则t1≠2或t2≠3
(3)若k>3,则方程
x2
k-3
-
y2
k+3
=1表示双曲线
(4)若α⊥β,α∩β=l,m⊥l,则m⊥β
正确命题是
 
(请填正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②正比例函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为1<x1<x2
④已知集合P={a,b},Q={-1,0,1},则映射f:P→Q中满足f(b)=0的映射共有3个.其中正确命题的序号是
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的个数有(  )
?x∈R,  x2-x+
1
4
≥0

?x>0,  lnx+
1
lnx
≤2

③“a>b”是“ac2>bc2”的充要条件;
④y=x|x|是奇函数.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案