精英家教网 > 高中数学 > 题目详情
如果实数x、y满足
x-y+3≥0
x+y-1≥0
x≤1
,若直线x+ky-1=0将可行域分成面积相等的两部分,则实数k的值为
 
考点:简单线性规划
专题:不等式的解法及应用,直线与圆
分析:作出不等式组对应的平面区域,根据直线将平面区域分成面积相等的两部分,得到直线过AB的中点,求出相应的坐标即可得到k的值.
解答: 解:作出不等式组对应平面区如图(三角形ABC部分):
∵直线x+ky-1=0过定点C(1,0),
∴C点也在平面区域ABC内,
要使直线x+ky-1=0将可行域分成面积相等的两部分,
则直线x+ky-1=0必过线段AB的中点D.
x=1
x-y+3=0
,解得
x=1
y=4
,即B(1,4),
x-y+3=0
x+y-1=0
,解得
x=-1
y=2
,即A(-1,2),
∴AB的中点D(
1-1
2
2+4
2
),即D(0,3),
将D的坐标代入直线x+ky-1=0得3k-1=0,
解得k=
1
3

故答案为;
1
3
点评:本题主要考查二元一次不等式组表示平面区域以及三角形的面积的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数(i-1)2等于(  )
A、-2iB、2i
C、2-2iD、2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(1+x)α(1+
1
x
)β
(x>0),其中α、β为正常数.
(Ⅰ)当α=β=1时,求f(x)的最小值;
(Ⅱ)若y>0,求证:(
α+β
x+y
)α+β≤(
α
x
)α(
β
y
)β
1
4
[(
α
x
)α+(
β
y
)β]2

查看答案和解析>>

科目:高中数学 来源: 题型:

侧面都是直角三角形的正三棱锥,底面边长为a,则此棱锥的全面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7个人排成一行,甲、乙都与丙不相邻,有
 
种不同排法.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};
④集合{x|4<x<5}可以用列举法表示;
⑤若全集U={1,2,3}且∁UA={2},则集合A的真子集共有3个.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称.
⑤设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
5
2
)=-
1
2

其中正确的有
 
(把你认为正确的序号全写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

若m、n表示直线,α、β表示平面,则下列四个命题中:
(1)若m∥α,则对任意的n?α,都有m∥n
(2)若实数t1,t2满足t1•t2≠6,则t1≠2或t2≠3
(3)若k>3,则方程
x2
k-3
-
y2
k+3
=1表示双曲线
(4)若α⊥β,α∩β=l,m⊥l,则m⊥β
正确命题是
 
(请填正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论中,正确的结论是(  )
①已知奇函数f(x)在[a,b]上是减函数,则它在[-b,-a]上是减函数;
②已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则k的取值范围是[40,160];
③在区间(0,+∞)上,函数y=x-1y=x
1
2
y=x
1
3
,y=x3中有3个函数是增函数;
④若logm3<logn3<0,则0<n<m<1.
A、①②③④B、①②③
C、①③④D、①②④

查看答案和解析>>

同步练习册答案