精英家教网 > 高中数学 > 题目详情
下列四个结论中,正确的结论是(  )
①已知奇函数f(x)在[a,b]上是减函数,则它在[-b,-a]上是减函数;
②已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则k的取值范围是[40,160];
③在区间(0,+∞)上,函数y=x-1y=x
1
2
y=x
1
3
,y=x3中有3个函数是增函数;
④若logm3<logn3<0,则0<n<m<1.
A、①②③④B、①②③
C、①③④D、①②④
考点:命题的真假判断与应用
专题:函数的性质及应用
分析:①由奇函数的性质即可得出;
②配方可得函数f(x)=4x2-kx-8=4(x-
k
8
)2-
k2
16
-8
在[5,20]上具有单调性,利用二次函数的单调性可得
k
8
≤5
k
8
≥20
,解出即可;
③利用幂函数的单调性即可得出;
④由logm3<logn3<0,利用对数的换底公式可得
lg3
lgm
lg3
lgn
<0
,得到0>lgm>lgn,即可得出.
解答: 解:①已知奇函数f(x)在[a,b]上是减函数,由奇函数的性质可得:f(x)在[-b,-a]上是减函数,正确;
②∵函数f(x)=4x2-kx-8=4(x-
k
8
)2-
k2
16
-8
在[5,20]上具有单调性,
k
8
≤5
k
8
≥20

解得k≤40或k≥160.
则k的取值范围是(-∞,40]∪[160,+∞),因此不正确;
③在区间(0,+∞)上,函数y=x
1
2
y=x
1
3
,y=x33个函数是增函数,函数y=x-1是减函数,正确;
④若logm3<logn3<0,则
lg3
lgm
lg3
lgn
<0
,∴0>lgm>lgn,
∴0<n<m<1.正确.
综上可知:只有①③④正确.
故选:C.
点评:本题考查了指数函数、幂函数、对数函数及其二次函数的单调性、函数的奇偶性等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x、y满足
x-y+3≥0
x+y-1≥0
x≤1
,若直线x+ky-1=0将可行域分成面积相等的两部分,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=
3
sin2x-cos2x的图象向左平移|m|个单位(m>-
π
2
),若所得的图象关于直线x=
π
6
对称,则m的最小值为(  )
A、-
π
3
B、-
π
6
C、0
D、
π
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z满足(3-4i)z=|4+3i|(i为虚数单位),则z的虚部为(  )
A、-4
B、-
4
5
C、4
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
cos(
2
-2x)的单调递增区间是(  )
A、[kπ-
π
4
,kπ+
π
4
](k∈Z)
B、[kπ-
π
4
,kπ)(k∈Z)
C、[kπ+
π
4
,kπ+
4
](k∈Z)
D、[kπ+
π
4
,kπ+π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
),则下面说法错误的是(  )
A、f(x)在(0,
π
4
)上是增函数
B、f(x)的最小正周期为π
C、f(x)的图象向右平移
π
6
个单位得到曲线y=sin2x
D、x=-
12
是f(x)图象的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若M为棱PC的中点,求异面直线AP与BM所成角的余弦值;
(Ⅲ)若二面角M-BQ-C大小为30°,求QM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项为非负实数,前n项和为Sn,且S
 
2
n
-n2Sn-(n2+1)=0
(1)求数列{an}的通项公式;
(2)当n≥2时,求
1
S2-2
+
1
S3-2
+
1
S4-2
+…+
1
Sn-2

查看答案和解析>>

科目:高中数学 来源: 题型:

积分
2
-1
e
|x|
 
dx
的值是
 

查看答案和解析>>

同步练习册答案