精英家教网 > 高中数学 > 题目详情
积分
2
-1
e
|x|
 
dx
的值是
 
考点:定积分
专题:计算题,导数的概念及应用
分析:把给出的积分区间分段,分别求在两段区间上的定积分得答案.
解答: 解:
2
-1
e
|x|
 
dx

=
0
-1
e-xdx
+∫
2
0
exdx

=-e-x
|
0
-1
+ex
|
2
0

=-e0+e+e2-e0
=-1+e+e2-1
=e2+e-2.
故答案为:e2+e-2.
点评:本题考查定积分,解答的关键是把要求的定积分转化为(-1,0)和(0,2)上的定积分求解,被积函数不含绝对值,易于求解被积函数的原函数,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个结论中,正确的结论是(  )
①已知奇函数f(x)在[a,b]上是减函数,则它在[-b,-a]上是减函数;
②已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则k的取值范围是[40,160];
③在区间(0,+∞)上,函数y=x-1y=x
1
2
y=x
1
3
,y=x3中有3个函数是增函数;
④若logm3<logn3<0,则0<n<m<1.
A、①②③④B、①②③
C、①③④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,BB1=2,求:
(1)异面直线B1C1与A1C所成角的大小;
(2)直线B1C1到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知命题p:?x∈R,tanx=2,命题q:?x∈R,x2-x+1≥0,则命题p∧q为真;
②函数f(x)=2x+2x-3在定义域内有且只有一个零点;
③数列{an}满足:a1=2068,且an+1+an+n2=0(n∈N*),则a11=2013;
④设0<x<1,则
a2
x
+
b2
1-x
的最小值为(a+b)2
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;  
②x=4是函数y=f(x)图象的一条对称轴;  
③函数y=f(x)在区间[6,8]上单调递增;
④若方程f(x)=0.在区间[-2,2]上有两根为x1,x2,则x1+x2=0.
以上命题正确的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2-2x
,当x>1时,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,则整数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-
x
)20
的展开式中,系数为有理数的项共有
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=τ(A),已知P0(x0,y0),(x0,y0∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=τ(Pi-1),且点Pi的坐标为(xi,yi),其中i=1,2,3,…,n,则点P0的“相关点”有(  )个.
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

同步练习册答案