精英家教网 > 高中数学 > 题目详情
求下列函数的值域.
(1)y=
x-2
+1(换元法)       (2)y=
3x+4
x-1
       (3)y=2x2-5x,x∈[2,3].
考点:函数的值域
专题:函数的性质及应用
分析:(1)利用换元法设出
x-2
=t,转化成一次函数,进而根据单调性求得函数的值域.
(2)把函数解析式整理成3+
7
x-1
进而求得函数的值域.
(3)根据二次函数的单调性确定函数y的范围.
解答: 解:(1)设t=
x-2

∵x≥2,则t≥0,
y=t+1(t≥0),故ymin=1,
即函数的值域为[1,+∞).
(2)y=
3x-3+7
x-1
=3+
7
x-1

7
x-1
≠0,
∴函数的值域为{y|y∈R,y≠3}.
(3)y=2x2-5x,函数图象的对称轴为x=
5
4
,开口向上,
函数在区间[2,3]单调递增,
∴y∈[-2,3].
点评:本题主要考查了函数的值域的求法.综合考查了学生对基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2013年4月14日,CCTV财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:
混凝土耐久性达标混凝土耐久性不达标总计
使用淡化海砂25t30
使用未经淡化海砂s1530
总计402060
(Ⅰ)根据表中数据,求出s,t的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?
(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?
参考数据:
P(k2≥k)0.100.0500.0250.0100.001
k2.7063.8415.0246.63510.828
参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+bx+4
(1)若f(x)为偶函数,求b的值;
(2)若f(x)有零点,求b的取值范围;
(3)求f(x)在区间[-1,1]上的最大值g(b).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,∠ABC=45°,AB=SA=SB=2.
(1)证明:SA⊥BC;
(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}前n项和为Sn,且a3=3,S15=120.
(1)求数列{an}的通项an
(2)设bn=n•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD是正方形,PA⊥面ABCD,且PA=AB,E,F是侧棱PD,PC的中点.
(1)求证EF∥平面PAB;
(2)求证平面PBD⊥平面PAC;
(3)求直线PC与底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数.
(1)sin212°+sin248°+sin12°sin48°
(2)sin215°+sin245°+sin15°sin45°
(3)sin2(-12°)+sin272°+sin(-12°)sin72°
(4)sin2(-15°)+sin275°+sin(-15°)sin75°
(Ⅰ)试从上述四个式子中选择一个,求出这个常数
(Ⅱ) 根据(Ⅰ)的计算结果,将该同学的发现推广成三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设F(x)=
f(x)(x>0)
-f(x)(x<0)
,m>0,n<0,m+n>0,a>0且b=0,判断F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项为1的数列{an},满足an+1=
1
1+an
(n∈N*),则a3=
 

查看答案和解析>>

同步练习册答案