精英家教网 > 高中数学 > 题目详情
某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数.
(1)sin212°+sin248°+sin12°sin48°
(2)sin215°+sin245°+sin15°sin45°
(3)sin2(-12°)+sin272°+sin(-12°)sin72°
(4)sin2(-15°)+sin275°+sin(-15°)sin75°
(Ⅰ)试从上述四个式子中选择一个,求出这个常数
(Ⅱ) 根据(Ⅰ)的计算结果,将该同学的发现推广成三角恒等式,并证明你的结论.
考点:二倍角的正弦,归纳推理
专题:计算题,三角函数的求值
分析:(Ⅰ)选择(2),由sin215°+cos215°-sin15°cos15°=1-
1
2
sin30°=
3
4
,可得这个常数的值.
(Ⅱ)推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4
.直接利用两角差的余弦公式代入等式的左边,化简可得结果.
解答: 解:(Ⅰ)选择(2),计算如下:
sin215°+cos215°-sin15°cos15°=1-
1
2
sin30°=
3
4
,故这个常数为
3
4

(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4

证明:sin2α+cos2(30°-α)-sinαcos(30°-α)
=sin2α+(
3
2
cosα+
1
2
sinα)2
-sinα(cos30°cosα+sin30°sinα)
=sin2α+
3
4
cos2α+
1
4
sin2α+
3
2
sinαcosα-
3
2
sinαcosα-
1
2
sin2α=
3
4
sin2α+
3
4
cos2α=
3
4
点评:本题主要考查两角差的余弦公式,二倍角公式的应用,考查归纳推理以及计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x-1.
(1)求函数f(x)的最小正周期;
(2)当x∈[0,
π
2
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)求f(x)在区间[-
π
6
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域.
(1)y=
x-2
+1(换元法)       (2)y=
3x+4
x-1
       (3)y=2x2-5x,x∈[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M和圆P:x2+y2-2
2
x-10=0相内切,且过定点Q(-
2
,0).
(Ⅰ)求动圆圆心M的轨迹方程;
(Ⅱ)不垂直于坐标的直线l与动圆圆心M的轨迹交于A、B两点,且线段AB的垂直平分线经过点(0,-
1
2
),求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,角α(α∈(
π
6
π
2
))的终边交单位圆于点A,将角α的终边按逆时针方向旋转
π
4
,交单位圆于点B.记A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
3
5
,求x2的值;
(Ⅱ)过点A、B分别作x轴的垂线,垂足依次为C、D,记△AOC、△BOD的面积分别为S1、S2,若S1=
3
S2,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BOC中,OA,OB,OC两两垂直,OA=OB=OC=2,E,F分别是棱AB,AC的中点.
(1)求证:AC⊥平面BOF;
(2)过EF作平面与棱OA,OB,OC或其延长线分别交于点A1,B1,C1,已知OA1=
3
2
,求直线OC1与平面A1B1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
(n=1,2,3…),此数列前n项和Sn的公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-
π
2
)=
4
5
,则cos2α=
 

查看答案和解析>>

同步练习册答案